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ADMISSION AND ACCOMMODATION

Applicants must apply at least one month before the beginning 
of the course.  Application forms should be sent on-line through 
our web site: http://www.cism.it or by post.

A message of confirmation will be sent to accepted partici-
pants. If you need assistance for registration please contact 
our secretariat.

The 700,00 Euro registration fee includes a complimentary 
bag, four fixed menu buffet lunches (Friday not included), 
hot beverages, on-line/downloadable  lecture notes and wi-fi 
internet access.

A limited number of participants from universitites and research 
centres who are not supported by their own institutions can be 
offered board and/or lodging in a reasonably priced hotel. Re-
quests should be sent to CISM Secretariat by April 7, 2010 along 
with the applicant's curriculum and a letter of recommendation 
by the head of the department or a supervisor confirming that 
the institute cannot provide funding. Preference will be given 
to applicants from countries that sponsor CISM.

The Deutscher Akademischer Austausch Dienst (DAAD) and 
the Deutsche Forschungsgemeinschaft (DFG) offer support to 
German students. Please contact:

DAAD, Kennedyallee 50, 53175 Bonn
tel. +49 (228) 882-0
e-mail: postmaster@daad.de
web site: http://www.daad.de/de/kontakt.html

DFG, Kennedyallee 40, 53175 Bonn
tel. +49 (228) 885 2655
e-mail: ing4@dfg.de
web site: http://www.dfg.de

Information about travel and accommodation is available on 
our web site, or can be mailed upon request.

For further information please contact:

CISM
Palazzo del Torso - Piazza Garibaldi 18
33100 Udine (Italy)
tel. +39 0432 248511 (6 lines)
fax +39 0432 248550
e-mail: cism@cism.it

Udine, June 7 - 11, 2010

Advanced School
coordinated by

Jürg Dual
ETH, Zürich
Switzerland

Jeremy J. Hawkes
University of Manchester

UK
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ULTRASOUND STANDING WAVE ACTION
ON SUSPENSIONS

AND BIOSUSPENSIONS IN MICRO-
AND MACRO FLUIDIC DEVICES



Contents 
Lecturers 

Talks  
M1 General Introduction  

• Laurell - Lecture 1: Introduction to Ultrasound Standing Wave Action on Suspensions 
and Biosuspensions in Micro- and Macro Fluidic Device  

• Wiklund - Lecture 1: Applications of nonlinear acoustics in medicine and biology  

M2 Fundamental Acoustics/Vibration  
• Dual - Lecture1: Linear Acoustics  
• Hill - Fundamentals of Acoustics II - No Notes  
• Dual - Lecture2: Vibrations in Solids  
• Dual - Lecture3: Fluid Structure Interaction  

M3 Fundamental Microfluidics  
• Nilsson - Lecture 1: Fundamentals of microfabrication techniques for microchip 

acoustic resonators  
• Bruus - Preface and Lecture 1: Basic concepts in microfluidics  
• Bruus - Lecture 2: Flow solutions and circuit models  
• Bruus - Lecture 3: Diffusion  

M4 Fundamental Electroacoustics  
• Hill - Electroacoustics: Electromechanical Systems & Transducers  
• Dual - Lecture 4: Piezoelectricity and Application to the Excitation of Acoustic Fields 

for Ultrasonic Particle Manipulation  

M5 Device Design, Modelling and Experimental Techniques  
• Hill - One D Models: One dimensional models and planar resonator design  
• Hill - One D Models Appendix: Appendix to One dimensional models and planar 

resonator design - Modelling for the robust design of layered resonators for ultrasonic 
particle manipulation  

• Wiklund - Lecture 4: Visualization and microscopy  
• Glynne-Jones: Electronics - Practical considerations  
• Wiklund - Lecture 5: Alternative contactless manipulation methods: Dielectrophoresis 
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• Wiklund - Lecture 3: Ultrasonic cell handling: Safety, biocompatibility and cell-cell 
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• Dual - Lecture 5: Experimental Characterization  

M6 Radiation Force Theory  
• Bruus - Lecture 4: Ultrasound acoustofluidics  
• Bruus - Lecture 5: Acoustic radiation force  
• Bruus - Lecture 6: Microchannel acoustophoresis  

M7 Streaming Theory  
• Sadhal - All Lectures  



M8 Applications  
• Laurell - Lecture 2: Acoustic valving and mixing in chemical microreactors  
• Hill - Surface Acoustic Wave Devices - No Notes  
• Laurell - Lecture 3: Free flow acoustophoresis and binary acoustic separation  
• Wiklund - Lecture 2: Designing multifrequency force fields in microsystems  
• Nilsson - Lecture 2: Ultrasonic trapping, cell culturing and coupling to bioanalysis  
• Laurell - Lecture 4: Affinity probing and biospecific extraction in acoustic standing 

wave chips  
• Wiklund - Lecture 6: Bioanalysis: Enhanced immunoassays and agglutination assays  
• Dual - Lecture 6: Particle Manipulation Using Acoustic Radiation Forces in 

Microachined Devices  
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• All Posters 
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Lecturers  
Henrik Bruus (Technical University of Denmark, Kongens Lyngby, Denmark) 
6 lectures on: Theory of ultrasound standing wave action in microfluidics. Governing 
equations for flow and diffusion. Perturbation theory of ultrasound including acoustophoresis 
and acoustic streaming. Emphasis will be placed on basic theoretical concepts and their 
application to experiments.  

Juerg Dual (ETH Zentrum, Zuerich, Switzerland) 
6 lectures on: Fundamentals of acoustics and vibrations in solids, fluid structure interaction. 
piezoelectricity, resonant and non resonant modes of excitation, numerical modeling, 
applications and characterization.  

Martyn Hill (University of Southampton, Great Britain) 
6 lectures on: Single and multi degree of freedom oscillators and resonance. 2 and 3 port 
transducer representations & equivalent circuits. 1D matrix models and circuit element 
models. Fundamentals of cell manipulation including filtration, concentration and biosensing.  

Thomas Laurell (Lund University, Sweden) 
5 lectures on: Microfabrication of microchip acoustic resonators and transducer 
characterisation. Acoustic valving, switching, mixing and chip integrated catalytic 
microreactors. Free flow acoustophoresis and affinity acoustophoresis in acoustic standing 
wave chips. Ultrasonic trapping, and coupling to biomedical analysis.  

Satwindar Singh Sadhal (University of Southern California, Los Angeles, CA 90089-1453, 
USA) 
6 lectures on: “Acoustic streaming with drops, bubbles and particles.” The nonlinear 
interaction of ultrasound standing waves with interfaces gives rise to a mean dc flow known 
as streaming. This phenomenon has been analyzed for drops, bubbles and particles by 
singular perturbation.  

Martin Wiklund (KTH - Royal Institute of Technology, Stockholm, Sweden) 
7 lectures on: Applications and practical aspects of ultrasonic manipulation, including 
instrumentation, optical monitoring, handling of bio-samples, safety and biocompatibility.  
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L1:
Applications of

nonlinear acoustics
in medicine and biology:in medicine and biology:

An overview

Martin Wiklund
Dept  of Applied Physics

M. Wiklund

-1-

Dept. of Applied Physics
Royal Institute of Technology

Stockholm, Sweden

CISM course ”Ultrasound standing wave action on suspensions 
and biosuspensions in micro- and macro fluidic systems”,

June 7-11, 2010

My background

Started as a PhD student at KTH Stockholm in 1999

My supervisor Hans Hertz was heading a group inMy supervisor Hans Hertz was heading a group in
X-Ray Physics, but suggested to me to follow up a short
work of USW from 1995:

M. Wiklund

-2-

(H. M. Hertz, J. Appl. Phys. 78, 4875, 1995)
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My background

Since Hans Hertz had limited experience in the USW field,
he sent me as a spectator to the Ultrasonics International
(UI’99) meeting in Copenhagen 1999.(UI 99) meeting in Copenhagen 1999.

Invited speakers:
Ewald Benes, Vienna
Terry Coakley, Cardiff

90’s USW community (EUSS):
Ewald Benes  Vienna

M. Wiklund

-3-

Ewald Benes, Vienna
Martin Gröschl, Vienna
Terry Coakley, Cardiff
Jeremy Hawkes, Manchester
Stefan Radel, Vienna
Felix Trampler, SinePhase / SonoSep
Itziar Gonzalez-Gomez, Madrid
...etc

My background

PhD in 2004 Postdoc 2004-2005
at Fraunhofer IBMT
(DEP, microfluidics)

Assoc. Prof at
KTH in 2009

Fraunhofer Institute for
Biomedical Engineering

PhD students:
JessicaSvennebring
Otto Manneberg
Ida Iranmanesh
Athanasia Christakou
Mathias Ohlin

M. Wiklund

-4-

My research profile:

Applied Physics, origin in optics, experimental

Cross-disciplinary (physics-bio)

Applications:
Bead-based assays
Immune cell interactions
Biocompatibility, cell viability
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Outline

1. Nonlinear acoustics:
Introduction and principlesIntroduction

2. Application I: Harmonic imaging (HI)
a) Tissue HI
b) Microbubble HI or Contrast HI

3 Application II: Acoustic streaming

M. Wiklund

-5-

3. Application II: Acoustic streaming
In particular in microfluidic
systems

Ultrasound in
medical applications?

Medical imaging (”echo”)

Cleaning /
cell lysis

All three
th d  

Lithotripsy

methods use
non-linear
effects!

M. Wiklund

-6-
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In this lecture:

Medical imaging (”echo”) Ultrasonic streaming in
lab-on-a-chip devices

III

M. Wiklund

-7-

Outline

1. Nonlinear acoustics:
Introduction and principlesIntroduction principles

2. Application I: Harmonic imaging (HI)
a) Tissue HI
b) Microbubble HI or Contrast HI

3 Application II: Radiation pressure and

M. Wiklund

-8-

3. Application II: Radiation pressure and
acoustic streaming
In particular in microfluidic
systems
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”It has been argued that every 
nonlinear problem is really individual, 
that it requires individual methods, q ,
usually very complicated and difficult 
methods.”

(Werner Heisenberg)

M. Wiklund

-9-

Karman vortices
Topic of Heisenberg’s thesis:

l ffFirst nonlinear effect:

”Cumulative nonlinear wave propagation”

or

”waveform steepening”

M. Wiklund

-10-

waveform steepening
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Wave equation

2 2
2s s 

1D wave equation for the particle displacement, s: 

Linear acoustics (1) 2
02 2

c
t x


 

In fact, above eq. is an approximation. More accurately: 

1 2 2
2
02 2

1
s s s

c
x t x

         

Linear acoustics 

Nonlinear acoustics 

(1)

(2)

M. Wiklund

-11-

x t x   

where ∂s/∂x is the strain
and  is the ratio of the
specific heats (CP/CV) 

gas γ @ 20˚C 

Ar 1.67

O2 1.40

CO2 1.30

Wave equation

1 2 2
2
02 2

1
s s s

c
x t x

         

M. Wiklund

-12-

x t x   
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Wave equation

Expand the first factor in the (nonlinear) wave equation:

1 2 2
21

s s s
    

 
2
02 2

1 c
x t x

      

1

1 1 ( 1)
s s

x x




       


Size of this term?

M. Wiklund

-13-

• Second term generates the second
harmonic components in the wave 

• The expansion of the equation makes it possible to
solve the linear equation and then use perturbation theory 

Wave equation

1

1 1 ( 1)
s s

x x




       


Size of this term?

∂s/∂x is only negligible (compared with unity) if

(∂s/∂x)max << 1  u0/c0 << 1

u0/c0 is called the acoustic Mach number, M

M. Wiklund

-14-

Numerical example (medical imaging, particle manipulation etc.):

p0 = 1 Mpa,   f = 1 MHz,   c0 = 1500 m/s (water or soft tissue)

 u0 = 0.7 m/s    M ≈ 10-3
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Sound speed (in gases)

Relation between (total) pressure and density (isothermal process):

P  0P
c

0 0P




 0
0

0

c




Relation between (total) pressure and density (adiabatic process):

(Newton, 17th cent.)

Note: Prediction by Newton ~16% lower than measured values!

(Boyle’s law)

M. Wiklund

-15-

0 0

P

P





 
  
 

0
0

0

P
c 


 (Laplace, 19th cent.)

Correction factor:

The nonlinear parameter B/A

Relation between (total) pressure and density (adiabatic process):

P


 
      

2 3

0 0 01 1 1 2
             

     
01


  

 
0 0P




  
 

2 3

0 0 0
0

0 0 0

...
2! 3!

B C
p P P A

     
  

       
          

     

Taylor expansion

Alternatively, in terms of acoustic pressure:

condensation

Compare the terms:
 B/A = -1

    0 0 0

0 0 0

1 1 1 2 ...
2! 3!

         
  

            
     

0

0

1


  
 

M. Wiklund

-16-

2

2 2 0 0
0

0 0

1 ...
2

B C
c c

A A

   
 

                  
        

Rewrite, in terms of sound velocity:

0
0

0

P
c 


with

Typical values of B/A: 5-10 (water or soft tissue)
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Cumulative nonlinear effects:
Waveform steepening

M. Wiklund

-17-

1

2 1
( ) sin(2 )

n

a t nft
n








  Waveform steepening:
Pure sine-wave transforms to
sawtooth-shaped
 overtones (”harmonics”)
are generated

(”sawtooth wave” from Wikipedia)

Nonlinear effects

…are more marked for:

-Higher frequencies

-Slower sound speeds (e.g. fluids, soft materials)

-Larger propagation distances

Larger (initial) amplitudes

M. Wiklund

-18-

-Larger (initial) amplitudes

-Smaller attenuation coefficients
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Outline

1. Nonlinear acoustics:
Introduction and principlesprinciples

2. Application I: Harmonic imaging (HI)
a) Tissue HI
b) Microbubble HI or Contrast HI

3 Application II: Radiation pressure and

Tissue HI

M. Wiklund

-19-

3. Application II: Radiation pressure and
acoustic streaming
In particular in microfluidic
systems

Nonlinear propagation:
Pulsed waves

Transmitted pulse

Received pulse

M. Wiklund

-20- Figures from: http://www2.erasmusmc.nl/ThoraxcenterBME/ 
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Field distribution

Fundamental (dB scale)

Radiated field from the transducer
(Simulation of the fundamental component)

2nd harmonic (dB scale)

3rd harmonic (dB scale)

M. Wiklund

-21-

near field far field

3rd harmonic (dB scale)

Figures from: http://www2.erasmusmc.nl/ThoraxcenterBME/ 

Tissue harmonic imaging

fundamental

harmonic

M. Wiklund

-22-
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Tissue harmonic imaging

Advantages, harmonic imaging:

-Reduction in near-field artefacts

-Reduction in size of the side lobes

-Narrower beam waist

M. Wiklund

-23-

Compare with optics:
Two-photon excitation microscopy
(and confocal microscopy)

Tissue harmonic imaging:
Clinical example

M. Wiklund

-24-

Fundamental imaging Harmonic imaging
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Outline

1. Nonlinear acoustics:
Introduction and principles

2. Application I: Harmonic imaging (HI)
a) Tissue HI
b) Microbubble HI or Contrast HI

3 Application II: Radiation pressure and

Tissue HI
Microbubble HI or Contrast HI

M. Wiklund

-25-

3. Application II: Radiation pressure and
acoustic streaming
In particular in microfluidic
systems

Microbubble harmonic imaging

C i  f th  b bbl

Microbubbles or contrast agents:
Stable gas bubbles in fluid suspensions

Compression of the bubble
retards relative to expansion
during an acoustic cycle

 nonlinear oscillation! 

shell

M. Wiklund

-26-

gas

liquid
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Microbubble harmonic imaging
Rayleigh-Plesset equation:
Oscillation of a gas bubble in an
incompressible and ∞ fluid medium
due to a driving pressure field p (t)

bubble
oscillation

source
oscillation

Line-scan
images vs.
time

liquid

R

due to a driving pressure field pa(t)

2
L

0

3 1
( )

2 ρ
R RR p p   

oscillation

(Ferrara et al., Annu. Rev. Biomed.

M. Wiklund

-27-

Frequency
spectrum

gas

p∞ = p0 + pa(t)

pgpL

R0

R (Ferrara et al., Annu. Rev. Biomed.
Eng. 9, 415, 2007)

Microbubble harmonic imaging
- what is it good for?

Clinical problem:

Blood perfusion in capillaries (d<0.1 mm)

Typical resolusion with ”normal” ultrasound:
c=1550 m/s; f=5 MHz λ=0.3 mm

Solution:

M. Wiklund

-28-

Microbubbles!

Compare with optics:

Acoustic counterpart to fluorescent probes!
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Microbubble harmonic imaging

flow
Microbubbles give 
strong signal 

flow

Signal disappears 
when an intense 
pulse is applied

Perfusion is quantified 
b  t d i  th  i l 

M. Wiklund

-29-

flow

flow

by studying the signal 
recovery

(Ferrara et al., Annu. Rev. Biomed.
Eng. 9, 415, 2007)

Modes of use:

1 I d 2 T t d 3 T t d

Microbubble harmonic imaging
- further developments?

shell shell shell
Y Y

1. Improved
contrast,
blood perfusion

2. Targeted
imaging

3. Targeted
imaging and/or
targeted therapy

antibody antibody

M. Wiklund

-30-

gas

liquid

gas

liquid

payload
(drug)

liquid

Y

Y

Y

Y
Y

Y
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Outline

1. Nonlinear acoustics:
Introduction and principles

2. Application I: Harmonic imaging (HI)
a) Tissue HI
b) Microbubble HI or Contrast HI

3 Application II: Radiation pressure and

Microbubble HI or Contrast HI

Radiation pressure and

M. Wiklund

-31-

3. Application II: Radiation pressure and
acoustic streaming
In particular in microfluidic
systems

Radiation pressure and
acoustic streaming

Acoustic radiation pressure

”It might be said that radiation pressure 
is a phenomenon that the observer is a phenomenon that the observer 
thinks he understands – for short 
intervals, and only every now and 
then.”

(Robert T. Beyer, 1978)

M. Wiklund

-32-

(Robert T. Beyer, 1978)
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d l ffSecond nonlinear effect:

”Confusion about coordinates”

M. Wiklund

-33-

Acoustic radiation pressure
• What is acoustic 

radiation pressure?
• Note: To get a static

force  we need a timeforce, we need a time-
averaged pressure 
gradient!

• So, let’s integrate the 
pressure over a time 
period

M. Wiklund

-34-
Thus, it is a non-linear effect!
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Acoustic radiation pressure:
compare with the Bernoulli principle

static
pressure dynamic

pressure

M. Wiklund

-35-

Acoustic radiation pressure:
simple model

Radiation pressure!

M. Wiklund

-36-

Eckart streaming – ”quartz wind”
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Applications?
Two different effects are used:

1. Manipulation of suspended objects
(standing wave fields)

E.g: trapping, separation, concentration…

2 M i l ti  f th  fl id di

M. Wiklund

-37-

2. Manipulation of the fluid medium
(standing or propagating fields)

E.g: mixing, pumping…

First experiment: Kundt’s tube
Experimental setup 1866

August Kundt Experimental setup today

M. Wiklund

-38-
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First experiment: Kundt’s tube
Experimental setup 1866

Is the (primary) radiation force really the reason for the pattern?

M. Wiklund

-39-

Rayleigh
streaming

Acoustic radiation pressure

”The subject of radiation pressure has been 
one of the most widely studied ”small 
subjects” of acoustics  with virtually every big subjects” of acoustics, with virtually every big 
name applying himself to the subject at some 
time or another, and with many little names 
doing likewise.”

(Robert T. Beyer, 1978)

M. Wiklund

-40-

Examples of ”big names”:
Euler, Maxwell, Boltzman, Lord Rayleigh, Brillouin 
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Gustav Hertz:
Radiation pressure
on fluid fluid

Gustav Hertz’ ”acoustic fountains”

on fluid-fluid
interfaces

...by the way...
Gustav had a friend...
and a little boy Hellmuth

...who later became the
father of echo-cardiography

M. Wiklund

-41-
(G. Hertz and H. Mende, 1939)

…and also father to

Hans Hertz 

…but I have also
done some acoustics…

Outline

1. Nonlinear acoustics:
Introduction and principles

2. Application I: Harmonic imaging (HI)
a) Tissue HI
b) Microbubble HI or Contrast HI

3 Application II: Radiation pressure andRadiation pressure and

M. Wiklund

-42-

3. Application II: Radiation pressure and
acoustic streaming
In particular in microfluidic
systems

Radiation pressure and
acoustic streaming
In particular in microfluidic
systems
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Method I: Acoustic streaming

Today: Mixing/pumping/sorting
in lab-on-a-chip devices

Background

Studies by Wesley Nyborg in the 1940s:Studies by Wesley Nyborg in the 1940s:

Streaming from a gas body in a fluid

(See historical review paper, Ultrasound Med. Biol. 26, 911, 2000)

Gas body

M. Wiklund

-43-

Cell suspension

Method I: Acoustic streaming

Today: Mixing/pumping/sorting
in lab-on-a-chip devices

Pumping

water
water

air

teflon tube

M. Wiklund

-44- (Diijkink et al., JMM 16, 1653, 2006)
Averaged fluid velocity field

Demo of the application:
”The acoustic windmill”
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Method I: Acoustic streaming

Today: Mixing/pumping/sorting
in lab-on-a-chip devices

Application of ”bubble pumping” to a microfluidic chip

M. Wiklund

-45- (Lee et al., Lab Chip 9, 41, 2009)

Method I: Acoustic streaming

Today: Mixing/pumping/sorting
in lab-on-a-chip devices

Mixing
(multiple-bubbles acoustic mixing)

Mixing
(single-bubble acoustic mixing)

M. Wiklund

-46-

(Lee et al., Lab Chip, 9, 41, 2009)

(Jun Huang et al., Lab Chip 9, 2738, 2009)
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Method I: Acoustic streaming

Today: Mixing/pumping/sorting
in lab-on-a-chip devices

flow

Method II: Radiation forces
at a density interface

sorting
flow

0.00 s

0.06 s

0.12 s

M. Wiklund

-47-

…
0.18 s

0.48 s

(G. Hertz et al.,
Z Phys. 114, 354,
1939)

(Johansson et al.,
Lab Chip 9, 297,
2009)

(Franke et al., Lab Chip, 10, 789, 2010)

Any commercial devices?
Advalytix (Germany):

- Micro-mixing in droplets or microwells
by leaky SAWs Plate booster96by leaky SAWs Plate booster96

M. Wiklund

-48-
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Any commercial devices?
Advalytix (Germany):

- Actuation of droplets by leaky SAWs

PCR chip

Contact angle asymmetry

Approx. 100 nl
droplets

M. Wiklund

-49-

(Wixforth et al. Superlatt. Microstruct. 33, 389, 2003)

Summary

- Non-linear effects are important in modern
ultrasonic technology

- Harmonic imaging and radiation pressure are 
based on two different non-linear effects
(a cumulative and a local)

- The research field is ”blooming” and growing!
( i ll  i  th  l b hi  it )

M. Wiklund

-50-

(especially in the lab-on-a-chip community)
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Lecture 1: Linear Acoustics 
J. Dual, ETH Zürich, Switzerland 
 
The basic theory of linear acoustics is presented here. It allows to calculate the sound 
field in a cavity, that is used to do particle manipulation.  
 

1. Basic Equations for Acoustics 
 
In the most simple case, acoustics describes the propagation of disturbances of the 
pressure field in a fluid, which is compressible, and for situations, where the viscosity 
may be neglected. For a more extensive explanation the reader is referred to [1]. 
 
In the framework of continuum mechanics, we deal with situations, where the  
wavelength λ >> free path length (which is  6*10-8m for air at standard conditions 
and much smaller than this for water in the liquid phase). 
 
Notation: Vector components with respect to a Cartesian coordinate system  
We use the indicial notation, i.e. summation convention for repeated indices is used 
for indices repeated in a term 
 
constant reference pressure   P0       

instantaneous pressure    P 
excess pressure or acoustical pressure p 
position vector of a particle   x = xi ei   
acoustical pressure    p(x,t) = P - P0 
constant equilibrium density   ρ0 

instantaneous density    ρ(x,t)  
particle displacement from equilibrium ξ(x,t) 

particle velocity     u(x,t) = 
t

∂ξ

∂
  

temperature      T(x,t) 

condensation     s := 0

0

ρ − ρ
ρ

, s << 1 

 
In the context of elementary fluid dynamics and thermodynamics, the quantities have 
to obey the following equations, when the viscosity is neglected. 
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Continuity equation 
(conservation of mass)    

Linear momentum equation (Euler) ρ ( iu
t

∂
∂

+ ui,j uj) + P,i = 0 

Constitutive law      P = P(ρ,T)  
 
For linear acoustics these equations are linearized, by assuming a constant reference 

state with u0 = 0, small disturbances, i.e. iu
t

∂
∂

>>  ui,j uj  ). This yields 

 

Continuity equation    
t
s

∂
∂ + ui,i = 0     (1) 

Linear momentum equation   ρ0 iu
t

∂
∂

+ p,i = 0     (2) 

 
This is the linear inviscid force equation for acoustic processes of small amplitudes. 
The constitutive law for an adiabatic situation, i.e. when heat flow is neglected, is 
given by 
         p = B s      (3) 

B is the adiabatic bulk modulus   B = ρ0 (
0

P
ρ

∂
∂ρ

) 

 
This is also called the equation of state. 
After combining equations (1) to (3), we obtain 
 

       p,ii = 2c
1

2

2

t
p

∂
∂      (4) 

       c2 = 
0

B
ρ

      (5) 

 
This is a linear partial differential equation: The classical wave equation in three 
dimensions, for which many solutions are known in the literature. It allows for 
dispersion free propagation of waves with the wave speed c. 
Eq. 5 allows to rewrite eq. 3 as 
 
       p =  ρ0 c2 s      (6) 
 
Examples:   
 ρ0 [kg/m3] B [N/m2] c [m/s] ρ0 c [Pas/m] 
Air at 20˚C 1.21 1.42 105 343 415 
Mercury Hg  13600. 2.53 1010 1450. 1.97 107 
Water at 20˚C 998. 2.19 109 1481. 1.48 106 

t
∂ρ
∂

 + (ρui),i = 0
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The characteristic impedance ρ0 c of the material is the product of density and wave 
speed. For plane waves it is equal to the quotient of pressure and velocity amplitude.  

The particle velocity can also be expressed with the velocity potential Φ 
 
       ui = Φ,i       
(7) 
 
The velocity potential also satisfies the wave equation. 
When solving eq. 4, an initial value problem must be solved that satisfies the 
boundary conditions. If all these conditions are properly formulated, a unique 
solution exists.  
For particle manipulation, most often a harmonic solution is sought, as the 
transducers used to excite the acoustic field are driven for times much longer than the 
typical response time of the system which is QT, where Q is the quality factor and T 
the period of the vibration. For a typical system with Q = 100 at 1MHz the response 
time is a fraction of a ms. We can therefore substitute the time dependence by a 
harmonic solution of circular frequency ω, i.e. all quantities have i te ω  or cos(ωt) as a 
factor, which is understood in the following and often omitted.  
The complex writing is used whenever damping is involved. In these cases it shall be 
understood that only the real part of the solution has a physical meaning. From eq. 4 
we obtain for the harmonic case 
 

      p,ii = - 
2

2c
ω p = - 2k  p      

(8) 
 
Here k is the wave number in the fluid and the following quantities are defined: 
 
f  = ω/2π  frequency        ( 1/s  ) 
λ = c/f  wavelength      ( m ) 
k = ω/c = 2π/λ wave number     ( Radians / m )   
T = 1/f  period      ( s ) 
 
k is a number that describes,  how many wavelengths will fit into a distance of 2π m.  
 
For harmonic solutions, the initial conditions are not relevant.  
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Typical  boundary conditions are: 
 
Fixed boundary i iu n 0=  (9) 

This means, that the particle velocity normal to the boundary surface (characterized 
by its unit normal n) must disappear. Note that because the fluid is assumed to be 
inviscid, no condition is imposed on the tangential velocity.  
When formulated in terms of the pressure p, eq. 9 together with eq. 2 yields 
 
Fixed boundary i ip, n 0=  (10) 
 
In reality all fluids have a certain viscosity, which forces the tangential velocity to be 
zero at the boundary. This happens within a narrow region which is called the Stokes’ 
layer. 
The thickness of the Stokes’ layer is given by the formula: 
 

 η
δ =

ρω
 (11) 

 
where η is the dynamic viscosity. For water at 1MHz the thickness δ is about 1 
micron and viscosity might become relevant for very small particles or cavities. 
 
Free boundary p = 0 (12) 
when surface tension is neglected. 
 
Fluid/solid boundary:  
When an acoustic fluid is in contact with a solid, none of the above boundary 
conditions is valid in a strict sense. More precisely we have 
 

 
i

iS i iF i

n ij i j

u n u n
n n p

=

σ = σ = −
 (13) 

 
The normal displacements at the interface must be equal and the normal stress in the 
solid must be equal to the negative pressure in the fluid. Here the indices S and F 
refer to the fluid and solid respectively, and σij is the stress tensor in the solid. 
 
 

The acoustic energy per unit volume is    etot = 
2
1 (

2
2

0 2
0

p
u

c
ρ

ρ
+ ) (14) 
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The sound intensity is defined as I  = 
T
1  ∫

T

0

pvdt  (15) 
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2. Sample Solutions 
 
For general geometries, no analytical solutions exist. For simple geometries, we can 
find solutions by assuming suitable functional dependencies that allow to satisfy the 
boundary conditions. This allows us to obtain a feeling for the physics. 
 

2.1 Harmonic Plane Wave Propagating in the Direction of +x 
 
We assume  p = p0 sin(kxx - ωt) 
and insert it into eq. 8 which yields kx = k  
 

5 10 15 20
x

-1.0

-0.5

0.5

1.0
p

 
 
This figure shows the wave patterns of a single wave (k = 1, ω = 1) at two times t1 = 
0 (solid) and t2 = 1 (dashed). It can be clearly seen that the wave moves to the right. 
For a traveling wave there are no nodes fixed in space. The nodes move with the 
wave speed c. 
 

2.2 Superposition of Harmonic Plane Waves Propagating in the Direction of 
+x and -x 

 
The wave moving in the +x direction might be reflected to yield a wave moving in 
the –x direction. If these two waves have the same amplitude and are superimposed 
on each other, the result can be rewritten using simple trigonometry. A typical term 
then is 
 
 P = p0 sin(kxx) cos(ωt) 
 
This is called a standing wave. 
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The superposition of the two waves therefore yields a nodal pattern, shown here again 
for the same parameters as in Chap. 2.1. At certain locations, the pressure is always 0, 
the maxima remain at the same location.  
More generally the solution will look like 
 
 p = (Acos(kxx) + B sin(kxx )) cos(ωt),  
 
where A and B need to be determined from the boundary conditions. Standing waves 
will always occur, if waves are reflected from boundaries. 
 

2.3 General plane wave propagating in the direction n 
 
We assume 
  p = p0 sin(kn nixi - ωt)  = p0 sin{kn (nixi - ct)} 
 
If the phase (term in brackets) is constant, then it describes the equation of a plane 
with normal n. If n is a unit vector, then after inserting the assumption into eq. 8, we 
obtain kn = k.  
As can be seen from the second part of the pressure assumption: 
 

 xini - ct = constant 
 

the plane moves through space in the direction n with the speed c 
This assumption is a special case for the d’Alembert solution to the wave equation: 
The sin function may be replaced by an arbitrary function, and still satisfies the wave 
equation (sufficient differentiability is assumed). 
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2.4 Homogeneous Solution for a One - Dimensional Resonator of Length L 
with Rigid Walls. 

 
The homogeneous solution has by definition no excitation. Only without damping, a 
nontrivial homogeneous solution can exist. 
The resonator is supposed to be cylindrical and extends from x = 0 to x = L. Because 
the resonator has a finite length, a wave generated at one end will be reflected at the 
other end. We therefore assume a standing wave in x direction: 
 
 p = (A cos(kxx) + B sin(kxx)) cos(ωt) 
 
In order to satisfy the PDE (eq. 8) kx = k. 
 
Now we have to satisfy all the boundary conditions (rigid walls) for all times t. 
 
 x = 0: p,x = 0 -> B = 0 
 x = L: p,x = 0    -> A sin(kL) = 0  
 
This means that only certain values of k are admissible, when we search for a non 
trivial solution! 
 
 km L = mπ, m = 0,1,2,… 
 
The corresponding parameters are 
 

 m mk cω =   ,  m
m

mcf
2 2L
ω

= =
π

  ,  m
m

c 2L
f m

λ = =  

 p = A cos(kmx) cos (ωt) (16) 
 
There are various modes called resonance modes, numbered by m, each having their 
mode shape, frequency and wavelength. 
 

0.2 0.4 0.6 0.8 1.0
x

-1.0

-0.5

0.5

1.0
p
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The modes 1 (solid), 2(dashed) and 3 (thick) are shown in the figure for a tube of 
length 1. 
At all other walls, the unit vector normal to the wall is orthogonal to the pressure 
gradient, i.e. all boundary conditions are satisfied. 
 

2.5 Inhomogeneous Solution for a One - dimensional Resonator of Length L 
with Rigid Walls, Harmonic Pressure Excitation at x = 0 

 
We assume the same pressure distribution as in Chap. 3.4. However, the boundary 
condition is now: 
 
 x = 0: p = p0 cos(ωt)       (p0 is the given excitation amplitude) 
 x = L: p,x = 0 
 
The solution is 
 
 p = p0 (cos(kx) + tan(kL) sin(kx)) cos(ωt)  
 

 

0.2 0.4 0.6 0.8 1.0
x

-100

-50

50

100

p

p0

 
 
Here the normalized  pressure p is plotted vs. x for L = 1 and excitation frequencies 
and corresponding k close to the first mode (k=π/2, solid), the second mode (k = 
3π/2, thick) and in between (k= π).  
Please note: 
Near the resonance frequencies, there is constructive interference between the 
outgoing and the reflected waves, leading to an amplification of the pressure 
amplitudes. In between, there is destructive interference leading to an extinction of 
the pressure amplitude. 
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2.6 Homogeneous Solution for a Three - Dimensional Cuboid Resonator of 
Dimensions Lx, Ly, Lz with Rigid Boundaries 

 
Motivated by eq. 16 we assume a pressure distribution:  
 
 p = A cos(kxx) cos(kyy) cos(kzz) cos (ωt) 
 
Using eq. 8 we obtain 
 
 2 2 2 2

x y zk k k k+ + =  
 
If we take 
  

 

/ , 0,1, 2,..

/ , 0,1,2,..

/ , 0,1,2,..

= =

= =

= =

x x

y y

z z

k p L p

k q L q

k r L r

π

π

π

 

 
all the boundary conditions are satisfied, so we have found an infinite number of 
solutions. The corresponding frequencies are computed from  
 

 2 2 2( / ) ( / ) ( / )
2pqr x y z

c
f p L q L r L= + +  

 
by using the definition of k. 
For micromanipulation, often the z dimension of the resonators is small, such that      
r = kz = 0. 
The following graphs show a selection of pressure distributions for various values of 
p, q, r. 
 

       
p = 1, q = 0, r = 0      p = 0, q = 1, r = 0 
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p = 1, q = 1, r = 0      p = 2, q = 1, r = 0 
 

       
p = 2, q = 2, r = 0      p = 4, q = 6, r = 0 
 
Please note, that any superposition of the above mentioned modes is also a solution. 
Because there is no rigid boundary, the above ideal solutions have to be modified 
depending on the impedance of the structure surrounding the cavity. 
 
Exercise: Based on eq. 2, sketch the velocity distributions using arrows in the x-y 
plane. 
 

3. Literature 
 
1. Kinsler, L.E. et al., Fundamentals of Acoustics, Wiley, New York, 1982 
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Lecture 2: Vibrations in Solids 
J. Dual, ETH Zurich, Switzerland 
 

Dynamics of Linear Elastic Solids 
The motion of solids is more complicated than the one for fluids, because a solid can 
support shear stresses. The basic equations in the context of linear elasticity are: 
 
The kinematical relations which connect displacement ξ with the strain tensor γ: 
 

  γij  = i j j i
1 ( , , )
2

ξ +ξ  (1) 

i.e.    γ11 = ξ1,1   is the longitudinal strain in the x1 direction, 

 γ12 = 1,2 2 1
1 ( , )
2

ξ + ξ   is the shear strain in the 1-2 plane 

 
“ ,j” means taking the derivative with respect to xj and the summation convention is 
used for repeated indices. 
 
e.g. γii = γ11 + γ22 + γ33  is the volume strain! 
 
With the components of the stress tensor σij we can formulate the local linear 
momentum equation: (σij symmetrical !) 
 

In direction x1: σ11,1 + σ12,2 + σ13,3 =  ρ u·· 1 

In direction x2: σ12,1 + σ22,2 + σ23,3 =  ρ u·· 2 

In direction x3: σ13,1 + σ23,2 + σ33,3 =  ρ u·· 3 
 

Or in indicial notation for 
 

direction xi: σij,j  =  ρ u·· i (2) 
 
An isotropic linearly elastic body is fully described by two material constants E, G 
or λ and μ, where E, G are Young’s and shear modulus and λ, μ are the Lamé 
constants. 
 
 σij = λ γkk δij  + 2 μ γij (3) 
 

δij is the unity tensor. 
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 δij  = 
1 i j
0 i j

=⎧ ⎫
⎨ ⎬≠⎩ ⎭

…
…

 

 
λ and μ are related to E and G by 
 

 μ = G =  
E

2(1+ν)  (4) 

 λ = 
νE

(1+ν)(1-2ν)   =  2 G 
ν

(1-2ν)  

 
ν is Poisson’s ratio. 
 
Combining eq. 1 to 3 we obtain 
 

 σij,j = (λ + μ) ξk,ki + μ ξi,kk = ρ 
2

i
2t

∂ ξ
∂

 (5) 

These are three coupled differential equations that need to be solved together with  
 
initial conditions ξ(x, 0) = g (x) 

 (x,0)
t

∂ξ
∂

= h (x) 

 
As boundary conditions, either the displacement ξ or the stress vector t = σ n must be 
given on the boundary for all times t. A combination of ξt together with tn or ξn with tt 

is also possible, where the indices n und t denote the normal and tangential 
components of the vectors, respectively. As an example, for the interface of an 
inviscid fluid with the solid structure we have 
 
 ξnF = ξnS,     -p n = tnS,     ttS = 0 
 
There exists a unique solution to these equations, if all the conditions are set up 
properly. 
Eq. 5 are pretty complicated. They can, however, be simplified and it can be shown 
that two types of waves exist: 
 

P-waves c1 :=  
λ+2μ

ρ     (6) 

S-waves c2 :=  
μ
ρ  < c1 

 
Because c1 > c2 the two types of waves are called Primary or P - waves and 
Secondary or S – Waves. 



3 

 

Typical values are c1 = 6300m/s and c2 = 3140m/s for aluminium and c1 = 2650m/s 
and c2 = 1080 m/s for PMMA. 
For silicon, the situation is more complicated as Si is anisotropic. Therefore the wave 
speeds are depending on the direction of propagation and the constitutive law must be 
replaced by 
 
 σij = cijkl γkl    (summation over k and l!) 
 γij = sijkl σkl (7) 
 
The forth order tensors cijkl and sijkl are the stiffness and the compliance tensor of the 
material, respectively. While the wave propagation in such materials is quite 
involved, for a numerical vibrational analysis of a structure often only the material 
properties are changed when compared to an isotropic solution. 
 

Vibrations of Linearly Elastic Solids 
The two types of waves interfere and get reflected at boundaries to yield the modes of 
vibrations. For general geometries as they occur in particle manipulation devices, a 
numerical solution must be found, which typically is called the Finite Element 
Method (FEM) solution. The usual steps when applying the FEM are: 
- Definition of the geometry 
- Definition of material properties  
- Choosing suitable elements for the spatial discretization. Important in this decision 

is whether structural elements (beams, plates, shells) or 3D brick elements are 
used. Also the approximation of the displacement functions within the element is 
an important consideration. 

- Definition of boundary conditions, interface conditions and loading conditions 
(possibly depending on the element) 

- Choosing the mode of analysis (e.g. harmonic analysis) 
- Computation of the results 
- Analysis of the results and quality check 
 
If one or two dimensions of a structure are much smaller than the third, there exist a 
number of models that allow simple interpretation of the vibration: 

- Beam (length >> cross-section): Longitudinal, torsional and bending vibration 
- Plate (flat, thickness H << other dimensions): Longitudinal and bending 

vibrations. 
- Shell: As plate, except that the middle surface has a curvature. 

In view of the applications to micromanipulation we focus here on bending vibrations 
of thin plates. 
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Bending Vibrations of Thin Plates 
In structures it is customary to refer all quantities to the middle surface. For 
simplicity we consider here a displacement w of the middle surface in the z direction 
independent of y. 

We consider the case of bending vibrations in the context of the Kirchhoff plate 
theory, which is the equivalent to the Euler-Bernoulli beam theory. For a 
homogeneous, isotropic, linearly elastic plate of unit width, small strains, small 
deformation and wavelengths which are large with respect to the thickness h of the 
plate the following equations are valid: 
 

 Mby = - 2

E
1− ν

Iy w,xx  onstitutive law and kinematics 

 - Qz + Mby,x = 0  angular momentum equation (8) 

 p* + Qz,x = ρ A 
2

2

w
t

∂
∂

  inear momentum equation 

 
Here, A is the cross-sectional area, Iy the moment of inertia of the cross-section, Mby 
the bending moment, Qz the shear force and p* the load per unit length. Please note 

that shear deformation has been neglected in the kinematic equation and rotatory 
inertia has been neglected in the angular momentum equation.  
 

 
2

E
(1 )− ν

 

 

is called the longitudinal plate modulus.  
Combining eqs. 8 we obtain  
 

 2

E
1− ν

Iy w,xxxx  + ρ A 
2

2

w
t

∂
∂

 = p* (9) 

 
 

xQ (x)

Q (x+dx)
p(x)

byM   (x+dx)
M   (x)by

y

w , z 

z

z

⊗

⊗
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In order to solve eq. 9 we consider harmonic solutions of the type 
 

 i( t kx)
0w w e , k

c
ω − ω

= = ,   c still unknown 

 
If w satisfies eq. 9, for p = 0 we obtain 
 

 c2 = ± y
2

EI
(1 )Aρ − ν

ω = ± c3 jy ω 

 

where  c3 = 2

E
(1 )ρ − ν

  longitudinal wave speed in plate 

 

and jy = 
2h

12
   radius of inertia of the cross-section 

 
c/c3 
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Normalized dispersion curve for bending waves in a plate 
 
The phase speed c is a function of frequency, therefore bending waves are dispersive. 
Using ω = c k we obtain: 
 
 ω = c3 jy k2  or  c = c3 jy k (10) 
 
Note that in general for plate vibrations, the differential equation is 
 

 D (w,xxxx  + 2w,xxyy + w,yyyy) + m 
2

2

w
t

∂
∂

= p (11) 

where 
 

jyk 
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 D = 
3

2

Eh
12(1 )− ν

,      m = ρh 

D is the bending stiffness, m and p are the mass and loading per unit area of the plate. 
 
Example:  
Consider vibrations of a plate that are independent of y, with pinned – pinned 
boundary conditions at x = 0 and x = L. 
We assume w(x,t) = f(x)eiωt 

After insertion into eq. (11) we get 
 
 f,xxxx – k4 ϕ = 0 
with the solution 
 
 f = a1 sin(kx) + a2 cos(kx) + a3 sinh(kx) + a4 cosh(kx) 
 
a1 to a4 are obtained from the application of the boundary conditions 
 
 f(0) = f(L) = f,xx(0) = f,xx(L) = 0 
 
Because the differential equation is of forth order, we need for boundary conditions. 
This yields a 4x4 homogeneous system of equations for the unknowns a1 to a4, the 
determinant of which must vanish for a non trivial solution to exist, resulting in 
 

 sin(kL) = 0 
and knL = nπ 
 
For the corresponding eigenfrequencies one obtains 
 

 fn 
2

3 y 2

nc j
2 L

π
=  

 
For other boundary conditions, the solution is more complicated. 
e.g. for clamped – clamped we have [1] 
 
 knL = 4.73, 7.85, 10.99, 14.14, ... 
 
Note that the resonance frequencies are proportional to 1/L2 and increase with n2. 
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Damping can easily be incorporated into the equations, if we restrict ourselves to 
harmonic motion. According to the theory of linear viscoelastic materials [2] and for 
small damping, the material is described by a complex Young’s modulus *E . 
 
 *E = 0E (1 i )+ ϕ  
 
Here ϕ  is  the loss tangent,  0E the elastic part. For metals ϕ is about 0.01 – 0.0001 

and *E  is nearly independent of frequency. For plastic materials, depending on 
temperature, a strong frequency dependence might be present.  
 
When solving a specific problem, we have to assume a driving function and proceed 
with 
 
 w(x,t) = A(x,y) eiωt 
 

and solve Eq. 11 for the complex amplitude distribution A(x,y). 
 
 

Literature  
1. Graff, K. F. , Wave Motion in Elastic Solids ,  Ohio State University Press, 
 1975 ( neu aufgelegt ) 
2. Christensen, R.M., Theory of Viscoelasticity, Academic Press, 1971 
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Lecture 3: Fluid Structure Interaction 
J. Dual, ETH Zurich, Switzerland 
 
When a fluid is in contact with a solid, fluid structure interaction takes place. Both 
the field equations in the solid and in the fluid must be satisfied, as well as the 
boundary conditions. In addition, at the interface, certain conditions must be satisfied, 
depending on how the fluid is modeled: 
 
As it has been mentioned, for the interface of an inviscid fluid with the solid structure 
we have 
 
 nF = nS,      -p n = tnS, ttS = 0 (1) 
 
At the interface the normal displacements must be equal, the normal stress of the 
solid must be equal to the negative of the pressure in the fluid, and the shear stress in 
the solid must vanish, if the fluid’s viscosity is neglected. Because of the difficulties 
in applying all the equations for the complex geometries of specific devices, 
numerical solutions must be found, which often are based on the Finite Element 
Method (FEM). Only for some simple problems, analytical solutions exist. Two cases 
are considered here: A first case, where the fluid motion does not influence the solid 
motion, and a second case, where there is a strong influence.   
 

Acoustic Radiation from a Surface Vibrating with a Harmonic 
Amplitude Distribution 
 
In this chapter situations are considered, where the surface of a solid half space   
(x < 0) is vibrating harmonically with a given velocity distribution ux(0, y). The fluid 
which occupies the half space x > 0 does not influence the motion. We look for the 
solution in the fluid, which must satisfy 
 

 p,ii = 2c
1

2

2

t
p


 = - k2 p,    k

c


  

 0 iu
t




+ p,i = 0               at x = 0 (2) 

 
a) i t

x 0u (0, y) u e   

we obtain the solution by setting p = p0
i( t kx)e   where we have assumed that there is 

no energy flowing back towards the surface (radiation condition). 
 



2 

 

 
p = 0 c 0u   i.e. the pressure amplitude is equal to impedance times velocity 

amplitude as expected. Energy is radiated into the fluid with an intensity 
 

 I = 2
0 0

1 cu
2
  

 
b) i t

x 0 yu (0, y) u sin(k y)e    , ky given 

we assume as a possible solution p = p0 ysin(k y) xi( t k x)e   which satisfies eq. 2 if 
 
 2 2 2

x yk k k   
 
We must discriminate between two cases: 

1) k > ky or y   =
y

2
k
  

i.e. the wavelength of the surface motion is larger than the wavelength in the fluid for 
the particular frequency. The frequency is larger than c/y. kx is a real number and we 
obtain a wave propagating away from the surface. 
 
2) k < ky or y    

i.e. the wavelength of the surface motion is smaller than the wavelength in the fluid 
for the particular frequency. The frequency is smaller than c/y, kx is a purely 
imaginary number. When inserted into the assumption, we obtain 
 

 
2 2
y

- x
0 y

k k

p = p sin(k y)e cos( t)  

  


 

 
This is an exponentially decaying pressure field, and no acoustic radiation occurs. 
The fluid is pumped back and forth between neighbouring valleys and hills according 
to 

 

x0
x y

0

y 0 x
y y

0

pu e sin(k y)sin( t)

k p
u e cos(k y)sin( t)






 


  


 

 
To summarize: For low frequencies, i.e. f < c/y no acoustic radiation occurs. 
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Acoustic Radiation from a Plate Vibrating Harmonically 
 
We now combine the Kirchhoff plate equations in 2D with the acoustic solutions by 
looking at a situation, where a plate vibrates in contact with a fluid halfspace x > 0 on 
one side. [1] The plate motion satisfies  
 

 D w,yyyy + m 
2

2

w
t




= p(x=0) (3) 

where 
 

 D = 
3

2

Eh
12(1 )

,      m = h 

 
D is the bending stiffness, m and p are the mass and loading per unit area of the plate. 
The fluid satisfies eq. 2. The boundary condition is: 
 

 
2

0 x2

w p,
t


  


  at x = 0 (4) 

 
Note, that the top surface of the plate is taken as x = 0. With this boundary we now 
consider the full interaction between the sound field and the motion of the plate. This 
will result in a modified wave speed for the wave in the plate. Assuming a wave 
traveling in the +y-direction we look for solutions of the form (ky unknown!) 
 

 
y

y

i( t k y)
1

i( t k y)
0

p p (x)e

w w e

 

 




 

 
which when inserted into the system of equations yields for the fluid: 
 
 2 2

1,xx y 1p (k k )p 0    

resulting in 

 
i x i x

1
2 2 2

y

p Ae Be

(k k )

   

  
  (5) 

 
As before we will have to discriminate two cases:  
 
1) k > ky or y     
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i.e. the wavelength of the plate motion is larger than the wavelength in the fluid for 
the particular frequency. The frequency is larger than c/y. We obtain a wave 
propagating away from the surface. 
The radiation condition yields A = 0. 
The boundary condition eq. 4 at the plate yields 
 
 2

0 0i B w     
 
We can now introduce the pressure into eq. 3, which yields 
 

 
2

4 2 0
y 0 0

i(Dk h )w w 
  


 

 
containing the dispersion relation modified by the fluid: 
 

 4 20
y 2 2

y

iDk ( h ) 0
(k k )


    


 

 
The solution ky must be obtained numerically. It is complex, representing the fact, 
that the acoustic radiation will introduce an exponential decay of the traveling wave. 
 
2) k < ky or y    

i.e. the wavelength of the plate motion is smaller than the wavelength in the fluid for 
the particular frequency. The frequency is smaller than c/y. 
When inserted into the assumption, we obtain 
 

 
2 2
y

x
1

k k   

p Be

  


 

 
and the boundary condition yields 
 
 2

0 0B w     
 
Following the same procedure we obtain the dispersion relation for this case 
 

 4 20
y 2 2

y

Dk ( h ) 0
(k k )


    


 

 
In this case, the dispersion relation is only modified in a way, where the mass term is 
increased by fluid being pumped around. 
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This is the situation that one would like to have, if one wants to make a density 
sensor. 
A special case of this is when k << ky. We can then neglect k, and also neglect 0 ky h 
when compared to (thin plate) and get 
 

 
2

5 0
yk

D

 
        (6) 

Physically speaking, all the stiffness is provided by the plate and all the mass is 
provided by the fluid. 
In the following some graphs are provided for a Silicon plate ( thickness 100microns) 
and water. 
 

200 400 600 800 1000
frequency kHz

5
10
15
20
25

k2 1

mm2 

 
Square of the wave number for waves in water ( solid ), bending waves in plates 
(dotted ) and interacting bending waves ( Eq. 6) (dashed) 
 
Literature: 
F. Fahy, Sound and Structural Vibration, Academic Press, 1987 
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Fundamentals of microfabrication 
techniques for microchip acoustic 

resonators 
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Department of Measurement Technology and !
Industrial Electrical Engineering !

Lund University!
Lund, Sweden!

johan.nilsson@elmat.lth.se!

Examples of microchip 
acoustic resonators 

Glass/Glass! Silicon/Glass!

Glass/Transducer/Polymer!

Glass/Silicon/Glass!

Svennebring et al. Biotech. Bioeng. 103 (2009)!

Evander et al. Anal. Chem. 79 (2007) pp 2984!

Evander et al. Anal. Chem. 80 (2008) pp 5178!



Examples of microchip acoustic 
resonators - Wall shapes 

Glass/Glass - Wide!

Silicon/Glass!

Glass/Glass - Narrow!

Evander et al. Anal. Chem. 80 (2008) pp 5178!

High/Low aspect ratio 
Bulk/Surface micromachining 

Microfabrication 

(Kovacs, Micromachined Transducers Sourcebook, )!

Surface!
micromachining!

Bulk!
micromachining!



Microfabrication lab 

•  Clean room environment!
–  Typically Class 100 - 1000 

(Particles per ft2)!

Photolithography 



Photolithography 

Exposure!

Resist development!

Etching!

Resist removal!

Silicon microfabrication 
Processing steps 
•  Oxidation!
•  Spinning of 

photoresist!
•  Lithography!
•  Cleaning!
•  Wet etching!

–  Isotropic!
–  Anisotropic!

•  Dry etching!
–  DRIE!

•  Bonding!



Silicon dioxide 

Thermal growth!
Oxygen ambient:!

Si + 02 -> SiO2 !
(dry oxidation) !

Thin, high quality!

Steam ambient:!
Si + 2H2O -> SiO2 + 2H2 

(wet oxidation)!
Thicker!
•  N2 carrier, saturated 

with steam!
•  H2 + O2 combustion!

Spinning of photoresist 
•  Spin coating!

–  Rotational speeds between 1500 and 
8000 rpm!

–  Resist film uniformity should be"
±5 nm from substrate to substrate!

–  Typical thickness: 0.8 – 3 µm!
–  Disadvantage: edge bead formation !

•  Spin speed versus thickness!

!

"
=

2Pkz
z: thickness!
k: constant!
P: percentage of solids!
w: rotational speed 
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Film thickness vs. spin speed for AZ4620 resist 



Microstructuring of silicon 

Mono-crystalline Silicon 

Czochralski technique!



Silicon crystal planes 

Etching of silicon 
Isotropic - Anisotropic 

Common etchant!
•  HNA – Hydrofluoric acid, 

Nitric acid, Acetic acid!

A)  Isotropic etching with agitation!
B)  Isotropic etching without agitation!

Isotropic!
Same etch rate in all directions!

Common etchants!
•  KOH – Potassium Hydroxide!
•  EDP – Ethylenediamene pyrocatecol!
•  TMAH – Tetramethylammonium 

hydroxide!

Anisotropic!
Etch rate dependent on crystal planes!

A,B Different orientations of masks on wafer!



(Madou, Fundamentals of microfabrication.)!

• Same etch rate in all 
directions!

• Underetch!!
• Agitation important!

• Stirring!
• Ultrasonic !

• HF + HNO3 + CH3COOH!
•  (Hydrofluoric acid, Nitric 

acid, Acetic acid)!

• Without agitation!

Etching of silicon 
Isotropic 

<100> silicon 
Anisotropic etching 

Stop-etch plane for!
KOH etching!

V-Groove!



Anisotropic etching 
<100> silicon – channel orientation 

Anisotropic etching 
<100> silicon – channel orientation 

Common etchants 
•  KOH – Potassium Hydroxide 
•  EDP – Ethylenediamene pyrocatecol 
•  TMAH – Tetramethylammonium hydroxide 

Vertical walls in <100>-silicon,!
but under-etch!!
Width > 2 x height!

The V-grooves are defined by the mask opening!
Due to the <111> stop etch plane in !
anisotropic etching!



Anisotropic etching 
<100> silicon  

Y-separator!

<110> silicon 
 Anisotropic etching 

Again mask alignment/orientation is fundamental for the end result. !

No under etch,!
due to the stop-etch plane!!
-> Possible to make deep!
narrow channels.!

Etch rate ratio:!
Vertical/horisontal!
~ 500:1!



Anisotropic etching 

•  KOH/water (isopropyl alcohol)!
–  Standard: 40 g KOH + 100 ml H2O!
–  Etch rate 1-2 µm/min!
–  Reduced surface roughness at higher concentrations!
–  80 deg C!
–  SiO2 etch mask is etched! Faster in a higher 

concentration!!
–  Sticking of H2 bubbles reduced by agitation (e.g. 

ultrasonic) !
–  Incompatible with IC (electronics) fabrication!

Anisotropic etching 

•  TMAH - Tetramethyl ammonium hydroxide!
–  Expensive compared to KOH!
–  Smooth surface finish!
–  IC compatible!
–  90 deg C!
–  Etch rate ca. 1 µm/min!



Dry etching 
DRIE - Deep Reactive Ion Etching 

(Sandia National Laboratories)!

• Very high aspect ratio etching 
method!

• Not dependent on crystal 
planes!

Etch depth dependent on width! Kovacs et al., Stanford University!
http://transducers.stanford.edu/stl/Projects/mems.html!

Dry etching 
DRIE 

•  plasma used to generate 
reactive species  !

•  process alternates between 
etching and polymer 
deposition steps!

•  a fluorocarbon/Ar mix is 
used for polymer deposition!

•  an SF6/Ar mix is used for 
etching; polymer removed 
from horizontal surface in 
etch step 

Polymer deposition!

Etching!



Dry etching 
DRIE - Examples 

Far left: Si trenches 80 µm 
deep x  4.5 µm wide / 2 µm 
line widths. AR=18:1, etch 
rate 2.2 µm/min.!
Left: Si trench: 2.2 µm/min, 
100 µm deep, AR=20:1, 90°
± <0.25 ° sidewall angle!

Ref: J. Bhardwaj et al., (Surface Technology 
Systems Ltd.), Proceedings: Annual Meeting of 
the Elettrochemical Society, Montreal, May 4-9, 
1997. 

Dry etching 
DRIE – Undulating walls 

• Sub micron undulation of 
wall due to the repeated 
protect/etch process!

http://en.wikipedia.org/wiki/Deep_reactive-ion_etching!



Dry etching 
DRIE - Example 

• 2 MHz resonance cavity!
• Wall – wall distance 375 µm !
• Depth 200 µm!

Resonance cavity!

Etch-stop techniques 
SOI - Silicon-on-Insulator wafers 

KOH!

DRIE!

The silicon in etched by KOH or DRIE and the etching stops when the SiO2 is reached!



Microstructuring of glass 

Glass microstructuring 

•  Glass usually processed by isotropic wet-etching 
(non-crystalline material)!

•  Dry etching - possible!
•  Laser ablation - possible!
•  Powder blasting - possible!



Glass microstructuring 

4´ wafers can be aquired with 
deposited chromium and 
photoresist to save time 

Starting material!

Chromium deposition!

The chromium improves 
photoresist adhesion and helps 
protect the glass!
Photoresist spinning and soft bake!

Litography 

UV or laser exposure!

Etch chromium!

Develop photoresist!

Hard bake!



Glass wet etching 

•  Glass etchant:!
–  Hydrofluoric acid!
–  Nitric Acid!
–  MilliQ-water!

•  Glass is amorphous!
- Isotropic etch profile!
- Width = 2x depth + 
mask opening!

Etch Profile 

•  1.Kal, S., Haldar, S., and Lahiri, S. K. Microelectron. 
Reliab. 1990 30 719 722[CrossRef], [ChemPort] 

•  2.Parisi, G. I., Haszko, S. E., and Rozgonyi, G. A. J. 
Electrochem. Soc. 1977 124 917921[CrossRef], [ChemPort] 

•  3.Spierings, G. J. Mater. Sci. 1993 28 6261 6273[CrossRef], 
[ChemPort] 

Under etch!

or!

Ideal isotropic etch profile!

Etch profile caused by insufficient !
convective mixing!

•  Ideally the etch profile should be semi-
circular!

•  Factors that can influence shape of side 
walls are (ref 1-3)!

•  Adhesion between masking layer and 
glass!
•  Amount and type of stirring!
•  pH and temperature of etch solution!

•  Wide and large structures usually 
becomes semi-circular!
•  Deep and small structures becomes  
tapered!



Etch Profile 

Anisotropic silicon wet etch!

Isotropic glass etch!
Tapered & jagged walls!

Silicon vs Glass!

Etch profile - Particle focussing 
Single node!
2 MHz!

Double node!
4 MHz!375 µm width!

M. Evander,A. Lenshof, T. Laurell, and J. Nilsson; Analytical Chemistry, 2008, 80, 13, 5178-5185!



Insufficient adhesion 
between glass and 
chromium gives jagged 
channel walls!

Etch Profile 

Insufficient adhesion 
between glass and 
masking gives jagged 
channel walls for 
channels in 
peripendicular 
direction to !

Fluidic movement caused 
by rocking table!

Etch Profile 
”Rocking table effect”!



Glass microstructuring 
Resonance cavity trapping of blood cells 

Glass microstructuring 
Wet etching, Poly-Si mask 



Microstructuring of glass 
Intersecting channels, Poly-Si mask 

Source: G. Boer et al, SAMLAB, IMT Neuchatel 

All geometries possible:!
•  every shape on the mask 

is faithfully reproduced 
in the photoresist layer!

Etchants used:!
•  all contain HF!
•  most use HF:HNO3 

mixed with H2O (typical 
ratio 20:14:66)!

•  buffered oxide or conc. 
HF (49%) also used!

•  surface roughness 
(nm)  dependent on 
etchant  

Thick film photoresist - SU-8 

http://www.microresist.de/su-8_en.htm!

•  Negative photoresist - becomes 
insoluble in developing solutions 
when exposed to optical radiation.!

•  Suitable for high-aspect-ratio 
structures, AR up to 20:1.!

•  Spin coat layers up to 500 µm 
thick.!

•  Low absorbance in UV.!
•  Thermally and chemically stable.!

(Ex. HNO3, NaOH at 90 deg C)!

Ref: J.M. Shaw et al, IBM Journal of Research and 
Development, www.research.ibm.com/journal/rd/411/
shaw.html 



PDMS 

•  SU-8 spin coated on silicon wafer!
•  UV exposure with clear field mask!
•  Pouring PDMS over the developed SU-8 

master!
•  Oxygen plasma treatment of PDMS surface 

and bonding to glass!

Soft lithography, SU-8 master - Channels in PDMS!

(from Nguyen and Wereley, Fundamentals and Application of Microfluidics, Artech House Publishers, 2002)!

PDMS 
Examples of  resonator designs using PDMS!

Guo et al. Appl. Phys. Letters. 92, 213901, 2008!

Hultström et al. Ultrasound in Med. & Biol. 33, 2007, 145!



Bonding techniques 

Joining of components!

•  Anodic bonding - Glass/silicon!

•  Silicon fusion bonding - Silicon/silicon!

•  Thermal bonding - Glass/glass!
–  Local melting of the material!
–  Low temperature glass bonding!

Anodic bonding 

Ref: W.H. Ko et al., in Sensors: A comprehensive survey, Vol. 1; 1989, VCH Press, Germany 

•  Surfaces need to be extremely clean and 
smooth!

•  Glass: cathode; Si: anode!
•  Applied potential pulls substrates together!
•  Wafers bonded almost immediately!
•  At high T: glass like a solid electrolyte; Na+ 

ions in the glass become mobile and move 
towards cathode!

•  Negative ions in glass left behind, forming a 
depletion layer!

•  High E in this layer transports oxygen out of 
the glass to bond with Si surface; seal 
appears chemical in nature (possibly Si-O 
bonds) 

Si-Glass!
(Field-assisted bonding, electrostatic bonding)!



Silicon fusion bonding 

•  surfaces need to be 
extremely clean and 
smooth!

•  hydration with e.g. 
H2O2-H2SO4 
(“piranha”)!

•  dry and put together: 
this should result in a 
bond of sorts!

•  then put in oven at 
T>1000 °C !

Ref: M. Madou, Fundamentals of Microfabrication, 1997, CRC Press!

Si-Si!
(Direct Bonding)!

Glass bonding 

Piranha wash or plasma treatment cleans 
and activates surfaces !

In furnace 12h@ 500-600oC!
”Pray to the glass bonding God” - Student comment !

Put lid on, sandwich between polished 
graphite wafers and apply pressure!

Removal of Photoresist and chromium!

Enable fluidic access e.g. by drilling holes!



Low temperature glass-glass 
bonding 

• HF bonding !

•  droplet of 1 wt.% HF wicked in between surfaces of 2 cleaned 
wafers by capillary forces!

•  about 1 MPa of pressure applied for a number of hours!
•  temperatures less than 200 °C are used!
•  bond strengths less than those for direct bonding obtained, but 

can achieve good sealing!
•  reported for SiO2-SiO2, SiO2-Si, and Si-Si bonding 

Ref: H. Nakanishi et al., Transducers’99: Technical Digest, Sendai, Japan, June 7-10, 1999, pp. 1332-1335.  

Microchip resonator microfabrication 
Summary 

•  Oxidation!
•  Spinning of 

photoresist!
•  Lithography!
•  Cleaning!
•  Wet etching!

–  Isotropic!
–  Anisotropic!

•  Dry etching!
–  DRIE!

•  Bonding!



Questions? 
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S. Melker Hagsäter, Peder Skafte-Pedersen, and Thomas Glasdam Jensen, as well as to my
colleagues Prof. Thomas Laurell and Per Augustsson of Lund University, Prof. H. Tom
Soh and Dr. Jonathan D. Adams of UC Santa Barbara, and Dr. Martin Wiklund and
Dr. Otto Manneberg of KTH-Stockholm.

Professor Henrik Bruus
Department of Micro- and Nanotechnology
Technical University of Denmark
June 2010

www.nanotech.dtu.dk/bruus



Chapter 1

Basic concepts in microfluidics

Microfluidics deals flow of fluids and of suspensions in submillimeter-sized systems in-
fluenced by external forces. In these lecture notes we focus in particular on acoustic
radiation forces from external ultrasound waves on suspended microparticles, an effect
known as acoustophoresis. The studies of such forces on particles dates back to the analy-
sis of incompressible particles in acoustic fields [King, 1934] and on compressible particles
[Yosioka 1955, Gorkov 1962].

The use of ultrasound standing waves for particle manipulation and separation has re-
ceived renewed interest in the past decade, especially in the context of the microscale lab-
on-a-chip format. As reviewed recently [Laurell 2007, Nilsson 2009], basically two applica-
tions have been developed showing great promise for applications within flow cytometry,
and much of the current technological development targets cell biology: (i) continuous-
flow-based acoustic separation and manipulation of particles and cells based on precision
microfabricated flow-through resonators operating in the laminar flow regime; and (ii)
acoustic particle trapping in different microchip configurations.

The success of these acoustic microparticle handling methods relies on the laminar
nature of the flow in microfluidics of the carrier liquid [Tabeling 2005, Bruus 2008]. Tur-
bulence is absent, resulting in regular and predictable flow patterns and particle motions.
In this chapter we study the governing equations of the carrier liquid formulated in terms
of the classical continuum description of the velocity field v and the pressure field p.

1.1 The velocity, pressure and density field

throughout the lecture notes we use the so-called Eulerian picture of the continuum fields,
where the spatial coordinates r are fixed in space, and we then observe how the fields evolve
in time at these points. Consequently, the position r and the time t are independent
variables. The Eulerian picture is illustrated by the velocity field in Fig. 1.1(a), and
in general the value of any field variable F (r, t) is defined as the average value of the
corresponding molecular quantity Fmol(r

′, t) for all the molecules contained in some liquid
particle of volume ∆V(r) positioned at r at time t,

F (r, t) =
〈
Fmol(r

′, t)
〉
r′∈∆V(r). (1.1)

1
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(a)

x x

y y

v(r, t−∆t) v(r, t)

r r

(b)
Ω

da
n

ρv

Figure 1.1: (a) The Eulerian picture: the spatial coordinates r do not follow the flow of
the molecules. Instead, the velocity field v at the fixed point r is defined by the molecules
in the white region at time t−∆t, and by the those in the dark gray region at time
t. (b) A sketch of the mass current density field ρv (long arrows) flowing through an
arbitrarily shaped region Ω (gray). Any infinitesimal area da (dark gray) is associated
with an outward-pointing unit vector n (short arrow) perpendicular to the local surface.
The current flowing out through the area da is given by da times the projection ρv · n of
the current density on the surface unit vector.

If we for brevity let mi and vi be the mass and the velocity of molecule i, respectively, and
furthermore let i ∈ ∆V stand for all molecules i present inside the volume ∆V(r) at time
t, then the definition of the density ρ(r, t) and the velocity field v(r, t) can be written as

ρ(r, t) ≡ 1

∆V
∑

i∈∆V
mi, (1.2a)

v(r, t) ≡ 1

ρ(r, t)∆V
∑

i∈∆V
mivi. (1.2b)

Here, we have introduced the “equal-to-by-definition sign” ≡. Notice how the velocity is
defined through the more fundamental concept of momentum.

In general, the field variables in microfluidics can be scalars (such as density ρ, viscosity
η, pressure p, temperature T , and free energy F), vectors (such as velocity v, current
density J, pressure gradient ∇p, force densities f , and electric fields E) and tensors (such
as stress tensor σ and velocity gradient ∇v).

1.2 Mathematical notation

The mathematical treatment of microfluidic problems is complicated due to the presence
of several scalar, vector and tensor fields and the non-linear partial differential equations
that govern them. To facilitate the treatment some simplifying notation is called for.

First, a suitable co-ordinate system must be chosen. We shall mainly work with Carte-
sian co-ordinates (x, y, z) with corresponding basis vectors ex, ey, and ez, which have unity
length and are mutually orthogonal. The position vector r = (rx, ry, rz) = (x, y, z) is writ-
ten as

r = rx ex + ry ey + rz ez = x ex + y ey + z ez. (1.3)
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In fact, any vector v can be written in terms of its components vi (where for Cartesian
co-ordinates i = x, y, z) as

v =
∑

i=x,y,z

vi ei ≡ vi ei. (1.4)

In the last equality we have introduced the Einstein summation convention: by definition
a repeated index always implies a summation over that index. Other examples of this
handy notation, the so-called index notation, is the scalar product,

v · u = viui, (1.5)

the length v of a vector v,

v = |v| =
√
v2 =

√
v · v =

√
vivi, (1.6)

and the ith component of the vector-matrix equation u = Mv,

ui = Mij vj . (1.7)

For the partial derivatives of some function F (r, t) we use the symbols ∂i, with i =
x, y, z, and ∂t,

∂xF ≡ ∂F

∂x
, and ∂tF ≡ ∂F

∂t
, (1.8)

while for the total time derivative of a quantity F
(
r(t), t

)
flowing along with the fluid

particles, we use the symbol dt,

dtF ≡ dF

dt
= ∂tF +

(
∂tri

)
∂iF = ∂tF + vi∂iF. (1.9)

The nabla operator ∇ containing the spatial derivatives plays an important role in differ-
ential calculus. It is given by

∇ ≡ ex∂x + ey∂y + ez∂z = ei∂i. (1.10)

The Laplace operator, which appears in numerous partial differential equations in theo-
retical physics, is just the square of the nabla operator,

∇2 ≡ ∇2 ≡ ∂i∂i. (1.11)

In terms of the nabla operator the total time derivative in Eq. (1.9) can be written as

dtF
(
r(t), t

)
= ∂tF + (v ·∇)F. (1.12)

Since ∇ is a differential operator, the order of the factors does matter in a scalar product
containing it. So, whereas v · ∇ in the previous equation is a differential operator, the
product ∇·v with the reversed order of the factors is a scalar quantity. It appears so often
in mathematical physics that it has acquired its own name, namely the divergence of the
vector field,

∇·v ≡ ∂xvx + ∂yvy + ∂zvz = ∂ivi. (1.13)
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Concerning integrals, we denote the 3D integral measure by dr, so that in Cartesian
co-ordinates we have dr = dxdydz. We also consider definite integrals as operators acting
on integrands, thus we keep the integral sign and the associated integral measure together
to the left of the integrand. As an example, the integral over a spherical body with radius
a of the scalar function S(r) is written as

∫

sphere
S(x, y, z) dx dy dz =

∫

sphere
drS(r) =

∫ a

0
r2dr

∫ π

0
sin θdθ

∫ 2π

0
dφS(r, θ, φ). (1.14)

When working with vectors and tensors it is advantageous to use the following two
special symbols: the Kronecker delta δij ,

δij =

{
1, for i = j,
0, for i 6= j,

(1.15)

and the Levi–Civita symbol εijk,

εijk =





+1, if (ijk) is an even permutation of (123) or (xyz),
−1, if (ijk) is an odd permutation of (123) or (xyz),
0, otherwise.

(1.16)

In the index notation, the Levi–Cevita symbol appears directly in the definition of the ith
component of the cross-product u× v of two vectors u and v, and of the rotation ∇× v,

(u× v)i ≡ εijk ujvk, and (∇× v)i ≡ εijk ∂jvk. (1.17)

As a last mathematical subject, we mention Gauss’s theorem, which we shall employ
repeatedly in these notes. For a given vector field V(r) it relates the volume integral in
a given region Ω of the divergence ∇ ·V to the integral over the surface ∂Ω of the flux
V·nda through an area element da with the surface normal n,

∫

Ω
dr∇·V =

∫

∂Ω
da n·V or

∫

Ω
dr ∂jVj =

∫

∂Ω
da njVj . (1.18)

By definition, the surface normal n of a closed surface is an outward-pointing unit vector
perpendicular to the surface, see Fig. 1.1(b).

1.3 Mass conservation; the continuity equation

The first governing equation of fluid dynamics to be derived is the continuity equation,
which expresses the conservation of mass in classical mechanics. We consider a compress-
ible fluid, i.e. a fluid where the density ρ may vary as function of space and time, and an
arbitrarily shaped, but fixed, region Ω in the fluid as sketched in Fig. 1.1(b). The total
mass M(Ω, t) inside Ω can be expressed as a volume integral over the density ρ,

M(Ω, t) =

∫

Ω
dr ρ(r, t). (1.19)
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Since mass can neither appear nor disappear spontaneously in non-relativistic mechanics,
M(Ω, t) can only vary due to a mass flux through the surface ∂Ω of the region Ω. The
mass current density J is defined as the mass density ρ times the convection velocity v,
or the mass flow per oriented unit area per unit time (hence the unit kg m−2 s−1),

J(r, t) = ρ(r, t) v(r, t). (1.20)

As the region Ω is fixed the time derivative of the mass M(Ω, t) can be calculated
either by differentiating the volume integral Eq. (1.19),

∂tM(Ω, t) = ∂t

∫

Ω
dr ρ(r, t) =

∫

Ω
dr ∂tρ(r, t), (1.21)

or as a surface integral over ∂Ω of the mass current density using Eq. (1.20) and Fig. 1.1(b),

∂tM(Ω, t) =

∫

∂Ω
da (−n)·J = −

∫

∂Ω
da n·(ρv) = −

∫

Ω
dr∇·[ρ(r, t)v(r, t)]. (1.22)

The last expression is obtained by applying Gauss’s theorem Eq. (1.18) to the vector field
V ≡ ρv. We have used −n because this is the direction of entering the region. It follows
immediately from Eqs. (1.21) and (1.22) that

∫

Ω
dr ∂tρ(r, t) = −

∫

Ω
dr∇·[ρ(r, t)v(r, t)]. (1.23)

This result is true for any choice of region Ω. However, this is only possible if the integrands
are identical. Thus we have derived the continuity equation,

∂tρ = −∇·(ρv) or ∂tρ = −∂j(ρvj). (1.24)

This one of the basic equations in acoustics, but in many other cases, especially in
microfluidics, where the flow velocity are much smaller than the velocity of speed of sound
(pressure waves) in the fluid, the fluid can be treated as being incompressible. This means
that ρ is constant in space and time, and the continuity equation simplifies to,

∇·v = 0 or ∂ivi = 0. (1.25)

1.4 Momentum Conservation; the Navier–Stokes equation

To derive the second governing equation, the equation of motion for the Eulerian velocity
field or the Navier–Stokes equation, we now turn from the mass density ρ of the fluid to
its momentum density ρv using an approach similar to that which led us to the continuity
equation. We consider the ith component Pi(Ω, t) of the total momentum of the fluid inside
an arbitrarily shaped, but fixed, region Ω. In analogy with the mass equation (1.21) the
rate of change of the momentum is given by

∂tPi(Ω, t) = ∂t

∫

Ω
dr ρ(r, t)vi(r, t) =

∫

Ω
dr

[(
∂tρ

)
vi + ρ∂tvi

]
. (1.26)
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In contrast to the mass inside Ω, which according to Eq. (1.22) can only change by convec-
tion through the surface ∂Ω, the momentum Pi(Ω, t) can change both by convection and
by the action of forces given by Newton’s second law. The forces can be divided into body
forces that act on the interior of Ω, e.g. gravitational and electrical forces, and contact
forces that act on the surface ∂Ω of Ω, e.g. pressure and viscosity forces. Thus, the rate
of change of the ith component of the momentum can be written as

∂tPi(Ω, t) = ∂tP
body
i (Ω, t) + ∂tP

conv
i (Ω, t) + ∂tP

pres
i (Ω, t) + ∂tP

visc
i (Ω, t). (1.27)

A body force fbody is an external force that act throughout the entire body of the
fluid. The change in the momentum of Ω due to a body force, e.g. gravity in terms of the
density ρ and the acceleration of gravity g , is given by

∂tP
body
i (Ω, t) =

∫

Ω
dr fbody

i =

∫

Ω
dr (ρg)i =

∫

Ω
dr ρgi. (1.28)

For the convection of momentum ρv into Ω, we note that it is described in terms of the
tensor (ρv)v, just as convection of density ρ is described by the vector (ρ)v. Considering
the ith momentum component, we see that the flux of momentum into Ω through the
infinitesimal area da is given by (ρvi)v · (−n)da, and thus the total change ∂tP

conv
i (Ω, t)

of momentum in Ω due to convection is given by

∂tP
conv
i (Ω, t) =

∫

∂Ω
da (−n)·(ρvi v) = −

∫

∂Ω
da nj ρvivj . (1.29)

For the change of momentum due to pressure, we find that at each infinitesimal area
da on the surface of ∂Ω, the surroundings act with the pressure force p(−n)da onto Ω. As
a result, the ith component of the momentum will change due to the force (−pnda)·ei =
−nipda, where ei is the unit vector corresponding to the ith component. Hence, we obtain

∂tP
pres
i (Ω, t) = −

∫

∂Ω
da n·(pei) = −

∫

∂Ω
da nj pδij . (1.30)

In the last equation we use that n ·ei = njδij , whereby n can be ascribed the same free
index j different from the momentum component index i as in Eq. (1.29).

The momentum in Ω is also changed by viscous friction at the surface ∂Ω from the
surrounding fluid. The frictional force dF on a surface element da with the normal vector
n must be characterized by a tensor rank of two since two vectors are needed to determine
it: the force vector and the surface normal. This tensor is denoted as the viscous stress
tensor σ′

ij , and it expresses the ith component of the friction force per area acting on a
surface element oriented with its surface normal parallel to the jth unit vector ej . Thus

dFi = σ′
ijnj da. (1.31)

This expression leads immediately to the change in the momentum of Ω due to the viscous
forces at the surface ∂Ω,

∂tP
visc
i (Ω, t) =

∫

∂Ω
da nj σ

′
ij . (1.32)
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The internal friction is only non-zero when fluid particles move relative to each other,
hence the viscous stress tensor σ′ depends only on the spatial derivatives of the velocity.
For the small velocity gradients encountered in microfluidics we can safely assume that
only first-order derivatives enter the expression for σ′, thus σ′

ij must depend linearly on the
velocity gradients ∂ivj . Further analysis shows [Bruus 2008] that it must be symmetric.
The most general tensor of rank two satisfying these conditions is

σ′
ij = η

(
∂jvi + ∂ivj

)
+ (β − 1)η

(
∂kvk

)
δij , (1.33)

where the first term relates to the dynamic shear viscosity η of an incompressible fluid,
while the second term, characterized both by η and by the viscosity ratio β (≈ 5/3 for
water and other simple fluids), is added when compressibility cannot be neglected. The
value of the viscosity η is determined experimentally, and for water we have

ηwater(20
◦C) = 1.002× 10−3 Pa s = 1.002 mPa s. (1.34)

The viscosity of water has a strong dependence on temperature changing from 1.787 mPas
at 0 ◦C to 0.282 mPa s at 100 ◦C.

The general equation of motion for a viscous fluid can now be found from Eq. (1.27)
by collecting the results from the previous subsections. In integral form we obtain

∫

Ω
dr

[(
∂tρ

)
vi + ρ∂tvi

]
=

∫

∂Ω
da nj

[
− ρvivj − pδij + σ′

ij

]
+

∫

Ω
dr ρgi. (1.35)

Utilizing Gauss’s theorem the surface integral involving nj can be rewritten as a volume
integral involving ∂j . Since the resulting volume integral equation is valid for any region
Ω the integrands must be identical. After some rewriting we finally arrive at the general
equation of motion for the Eulerian velocity field of a viscous fluid,

ρ∂tvi + ρvj∂jvi = −∂ip+ ∂jσ
′
ij + ρgi. (1.36)

The left-hand side can be interpreted as inertial force densities, density times the sum of
the local and the convective acceleration, while the right-hand side is the sum of intrinsic
or applied force densities. Normally, for the so-called Newtonian fluids at a given temper-
ature, the viscosity coefficients η and β can be taken as constants, and Eq. (1.36) reduces
to the celebrated Navier–Stokes equation,

ρ
[
∂tvi + vj∂jvi

]
= −∂ip+ η ∂ 2

j vi + βη ∂i(∂jvj) + ρ gi, (1.37a)

ρ
[
∂tv + (v·∇)v

]
= −∇p+ η∇2v + βη∇(∇·v) + ρg . (1.37b)

1.5 The Reynolds number and the Stokes equation

Mathematically the richness and beauty of hydrodynamic phenomena is spawned by the
non-linear term ρ(v·∇)v in the Navier–Stokes equation. On the other hand, the non-linear
term is also responsible for making the mathematical treatment of the equation more
complex and difficult; the solutions of the equation have never been fully characterized.
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However, as we shall see in the following, in the limit of low flow velocities, a limit highly
relevant for microfluidic systems, the non-linear term can be neglected. We enter the
regime of the so-called Stokes flow or creeping flow, where analytical solutions to a number
of flow problems can be found.

To determine when the non-linear term is negligible, we make the Navier–Stokes equa-
tion dimensionless by expressing all physical variables, such as length and velocity, in
units of the characteristic scales, e.g. L0 for length and V0 for velocity. If the system
is characterized by only one length scale L0 and one velocity scale V0, the expression of
co-ordinates and velocity in terms of dimensionless co-ordinates and velocity is

r = L0 r̃, and v = V0 ṽ, (1.38a)

where the tilde on top of a symbol indicates that the symbol is a quantity without physical
dimension, i.e. pure numbers. Once the length and velocity scales L0 and V0 have been
fixed the scales T0 and P0 for time and pressure follow,

t =
L0

V0

t̃ = T0 t̃, and p =
ηV0

L0

p̃ = P0 p̃. (1.38b)

Viscosity is important in microfluidics, so we choose P0 = ηV0/L0 instead of the other
possibility ρ V0

2. By insertion of Eqs. (1.38a) and (1.38b) into the Navier–Stokes equa-
tion (1.37b) excluding the body-forces as well as the compressibility term, and using the
straightforward scaling of the derivatives, ∂t = (1/T0) ∂̃ t and ∇ = (1/L0) ∇̃, we get

ρ

[
V0

T0

∂̃ tṽ +
V0

2

L0

(
ṽ ·∇̃)

ṽ

]
= −P0

L0

∇̃p̃ +
ηV0

L0
2 ∇̃2

ṽ, (1.39)

which after reduction becomes

Re
[
∂̃ tṽ +

(
ṽ ·∇̃)

ṽ
]
= −∇̃p̃ + ∇̃2

ṽ. (1.40)

Here, we have introduced the dimensionless number Re, the so-called Reynolds number,

Re ≡ ρV0L0

η
. (1.41)

For Re ¿ 1 the viscous term ∇̃2
ṽ in Eq. (1.40) dominates. For water in microfluidics

typical values are ρ/η = 106 s/m2, L0 ≈ 10−4m, and V0 ≈ 10−3 m/s, so Re ≈ 0.1.
Returning to physical variables in the limit of low Reynolds number, the non-linear

Navier–Stokes equation is reduced to the linear Stokes equation,

0 = −∇p+ η∇2v. (1.42)

If the time dependence is controlled by some external time scale different from the intrinsic
scale T0 = L0/V0, the time derivative is not necessarily negligible, and we must employ
the time-dependent, linear Stokes equation,

ρ ∂tv = −∇p+ η∇2v. (1.43)

For zero pressure gradient, and introducing the kinematic viscosity ν = η/ρ, this becomes

∂tv = ν∇2v, with ν =
η

ρ
. (1.44)
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1.6 Energy conservation; the heat-transfer equation

The third and last governing equation to be established is the heat-transfer equation of the
fluid relating the rate of change of the energy density to the energy density flux. When
working with thermodynamics of fluids it is natural to work with the thermodynamic
quantities per unit mass, which are directly related to the molecules present in the fluid.
Thus, we will work with the internal energy ε per unit mass, the entropy s per unit mass,
the enthalpy h per unit mass and the volume 1/ρ per unit mass instead of the energy E, the
entropy S, the enthalpy H and the volume V of the fluid. The first law of thermodynamics
relates internal energy dε, heat Tds, and pressure work −pd(1/ρ). When it is expressed
per unit mass, it takes the form

dε = T ds− pd
(
1
ρ

)
= T ds+

p

ρ2
dρ. (1.45)

The densities of the quantities involved are obtained by multiplying them by the mass
density ρ, e.g. the energy density is written as ρε.

In analogy with the study of the mass and momentum densities in the previous sections,
we consider the rate of change ∂tE(Ω, t) of the energy, i.e. the power conversion, of the
fluid inside some fixed region Ω. As the energy density is given by the sum of the kinetic
energy density 1

2ρv
2 and the internal energy density ρε, the rate of change is given by

∂tE(Ω, t) = ∂t

∫

Ω
dr

[
1
2ρv

2 + ρε
]
=

∫

Ω
dr ∂t

[
1
2ρv

2 + ρε
]
. (1.46)

As for the momentum changes Eq. (1.27), the energy of the fluid inside the region Ω can
change by energy convection through the surface ∂Ω, by work done by pressure and friction
forces from the surroundings acting on the surface ∂Ω of Ω, and by heat conduction due
to thermal gradients at the surface. For simplicity, we disregard heat sources and sinks
that in principle could be present inside Ω. Thus, the rate of change of the energy can be
written as

∂tE(Ω, t) = ∂tE
conv(Ω, t) + ∂tE

pres(Ω, t) + ∂tE
visc(Ω, t) + ∂tE

cond(Ω, t). (1.47)

Similar to Eqs. (1.22) and (1.29), the convection of energy into the region is easily
expressed in terms of the energy flux density Jε = (12ρv

2 + ρε)v,

∂tE
conv(Ω, t) =

∫

∂Ω
da (−n)·Jε = −

∫

∂Ω
da njvj

[
1
2ρv

2 + ρε
]
. (1.48)

The power transferred into the region Ω through the work done by the stress forces due
to pressure and viscosity at the surface is given by the product v · (σnda) of the velocity
of the fluid and the stress force vector,

∂tE
pres(Ω, t) + ∂tE

visc(Ω, t) =

∫

∂Ω
da vkσkjnj =

∫

∂Ω
da nj

[− pδjk + σ′
jk

]
vk. (1.49)

Thermal conduction occurs in any medium given a spatially varying temperature field
T (r). The heat flux density Jheat, which is the heat-transfer per area per time given in
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units of Jm−2 s−1 or Wm−2, can therefore be expanded in derivatives of the temperature.
For small temperature variations only the first derivative ∇T are significant, and we arrive
at Fourier’s law of heat conduction for an isotropic medium,

Jheat = −κ∇T, (1.50)

where the coefficient κ, having the unit W m−1 K−1, is called the thermal conductivity
of the fluid. For water at 20 ◦C we have κwater(20

◦C) = 0.597 W m−1 K−1. The rate of
change of energy due to conduction is readily found through the heat flux density and by
applying Fourier’s law,

∂tE
cond(Ω, t) =

∫

∂Ω
da (−n)·Jheat =

∫

∂Ω
da nj (κ∂jT ). (1.51)

The heat-transfer equation now follows from Eq. (1.46) by insertion of the above in-
tegrals. As before, we use Gauss’s theorem to convert the surface integrals into volume
integrals, and then equate the integrands to obtain

∂t
[
1
2ρv

2 + ρε
]
= −(

1
2v

2 + ε
)
∂j(ρvj)− ρvk∂k

(
1
2v

2
)− vj∂jp+ vj∂kσ

′
jk + ρ∂tε, (1.52)

where the continuity equation (1.24) and the equation of motion Eq. (1.36) have been
used to rewrite ∂tρ and ∂tvj , respectively. The last term ρ∂tε can be further rewritten by
using the first law of thermodynamics (1.45), thereby bringing the entropy s into play as
ρ∂tε = ρT∂ts + (p/ρ) ∂tρ = ρT∂ts − (p/ρ) ∂j(ρvj). Likewise, the third term containing
vj∂jp can also be rewritten by use of the first law, and we finally arrive at the heat-transfer
equation in the usual form

ρT
[
∂ts+ vj∂js

]
= σ′

jk∂kvj + ∂j
[
κ∂jT

]
, (1.53a)

ρT
[
∂ts+ (v·∇)s

]
= σ′ :∇v +∇·(κ∇T ). (1.53b)

The left-hand side is ρT times the total time derivative of the entropy per unit mass,
hence it expresses the total gain in heat density per unit time, while the right-hand side
represents the sources for heat gain: viscous friction and thermal conduction.

In microfluidics, the fluid velocities are generally much smaller than the speed of sound
in the fluid. Consequently, pressure variations are minute, leading to the constant pressure
approximation, for which ds = cpdT , where cp is the specific heat at constant pressure.
In this case the heat-transfer equation reduces to

ρcp
[
∂tT + (v·∇)T

]
= ∇·(κ∇T ) + σ′ :∇v. (1.54)

For a fluid at rest (v = 0) with a constant thermal coductivity κ, this equation becomes
the even simpler Fourier equation,

∂tT =
κ

ρcp
∇2T = Dth∇2T, (1.55)

which introduces the thermal diffusivityDth, which for water at 20 ◦C is 1.43×10−7 m2s−1.
This concludes our short introduction to the basics of theoretical microfluidics, and we

move on to study flow solutions and equivalent circuit theory for microfluidic systems.



Chapter 2

Flow solutions and circuit models

The Navier–Stokes equation is notoriously difficult to solve analytically because it is a
non-linear partial differential equation. In a few but important cases, analytical solutions
for the velocity field v and pressure field p can be found, and of these we shall treat
hydrostatics and the steady-state pressure-driven Poiseuille flow in the following. For
many practical applications it suffices to know the flow rate through a given system rather
than the detailed flow field. This is treated in the subsequent study of the so-called
equivalent circuit models in microfluidics.

2.1 Hydrostatic pressure

A fluid in mechanical equilibrium is at rest relative to the walls of the vessel containing
it, and the velocity field is therefore trivially zero everywhere. Thus v = 0, and if we
let z-axis point upwards the gravitational acceleration takes the form g = −gez . The
Navier–States equation 1.37b then takes the simple form

0 = −∇phs − ρgez, (2.1)

where the subscript ”hs” refers to hydrostatic. For an incompressible fluid, say water, the
density ρ is constant and phs is easily found to be

phs(z) = p∗ − ρgz. (2.2)

where p∗ is the pressure at the arbitrarily defined zero level z = 0. In many microfluidic
applications this is the only manifestation of gravity. It is therefore customary to write the
total pressure as ptot = p+ phs, such that in the Navier–Stokes equation the gravitational
body force is cancelled by the gradient of hydrostatic pressure. The resulting Navier–
Stokes equation thus contains the auxiliary pressure p and no gravitational body force.
We shall use this point of view frequently in the book.

The hydrostatic pressure phs provides an easy way of generating pressure differences
in liquids: the pressure at the bottom of a liquid column of height ∆H is higher by
∆p = ρgH than the pressure at height H. For water water ρg ≈ 104 Pa/m, so a vertical
water column of height 10 cm creates ∆p = 1 kPa, while it takes a height of 10 m to create
105 Pa = 1 bar ≈ 1 atm.

11
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x

y

z ∂Ω

Ω
C

p(0) =

p∗ +∆p

p(L) = p∗

Figure 2.1: Poiseuille flow of liquid through a straight channel Ω (gray), where the flow is
subject to the no-slip boundary condition on the surface ∂Ω. The channel is translational
invariant in the x direction, and it has an arbitrarily shaped cross-section C (dark gray)
in the yz-plane. The pressure at the left end, x = 0, is an amount ∆p higher than at the
right end, x = L.

2.2 Poiseuille flow

Our prime example of a solutions to the Navier–Stokes equation in the dynamic case
is the pressure-driven, steady state flows in straight channels, also known as Poiseuille
flows or Hagen–Poiseuille flows1. This class of flows is of major importance for the basic
understanding of liquid handling in lab-on-a-chip systems.

In a Poiseuille flow the fluid is driven through a long, straight, and rigid channel of
length L by imposing a pressure difference ∆p between the two ends of the channel, see
Fig. 2.1. The channel is placed horizontally along the x-axis, so along the vertical z-
axis gravity is balanced by the hydrostatic pressure. Furthermore, the cross-section of
the channel is constant along the x-axis, so the liquid in the channel is only affected
by the force from the pressure drop along the x-axis. The velocity field can therefore be
assumed only to have an x-component, and this component depends only on the transverse
co-ordinates y and z, such that v = vx(y, z) ex

2. For this special case we note that
(v ·∇)v = (vx∂x)vx(y, z) = 0 changing the non-linear Navier–Stokes equation into the
linear Stokes equation.

For the velocity field we employ the so-called no-slip boundary condition: On all points
on the solid surface ∂Ω the velocity of the fluid equals that of the wall vwall (often equal
to zero),

v(r) = vwall, for r ∈ ∂Ω (no-slip). (2.3)

The microscopic origin of this condition is the assumption of complete momentum relax-

1Whereas the pronunciation “Har-gen” with a hard “g” of the German name is straightforward for
English speakers, the French name Poiseuille is often a minor stumbling block. Its pronunciation lies
between “Pwa-soy” and ”Pwa-say”, but with the second vowel closer to the sound of “i” in the English
word ”Sir”.

2Although a valid mathematical solution at any flow speed, the translation-invariant velocity field is
only stable at low velocities. The translation-invariance symmetry is spontaneously broken as the flow
speed is increased, and eventually an unsteady turbulent flow appears as the physical solution having the
smallest possible entropy production rate.
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ation between the molecules of the wall and the outermost molecules of the fluid that
collide with the wall. The momentum is relaxed on a length scale, which approximately is
the molecular mean free path in the fluid, which for liquids and high-density fluids means
one intermolecular distance (' 0.3 nm).

The final form of the steady-state Navier–Stokes equation for the Poiseuille flow thus
becomes

v(r) = vx(y, z) ex, (2.4a)

0 = η∇2
[
vx(y, z) ex

]−∇p. (2.4b)

Since the y and z components of the velocity field are zero, it follows that both ∂yp and
∂zp are zero, and consequently that the pressure field only depends on x, p(r) = p(x).
Using this result, the x component of the Navier–Stokes equation (2.4b) becomes

η
[
∂ 2
y + ∂ 2

z

]
vx(y, z) = ∂xp(x). (2.5)

Here, it is seen that the left-hand side is a function of y and z, while the right-hand
side is a function of x. The only possible solution is therefore that the two sides of the
Navier–Stokes equation equal the same constant. However, a constant pressure gradient
∂xp(x) implies that the pressure must be a linear function of x, and using the boundary
conditions for the pressure we obtain

p(r) =
∆p

L
(L− x) + p∗. (2.6)

With this we arrive at the second-order partial differential equation that vx(y, z) must
fulfil in the cross-section C obeying no-slip boundary conditions at the solid walls ∂Ω,

[
∂ 2
y + ∂ 2

z

]
vx(y, z) = − ∆p

ηL
, for (y, z) ∈ C (2.7a)

vx(y, z) = 0, for (y, z) ∈ ∂Ω. (2.7b)

The resulting velocity field can be determined analytically for a limited number of
cross-section shapes [Bruus 2008], and here we present two of these solutions: a channel
with a circular cross-section of radius a, and a channel formed between two horizontal
infinite parallel plates placed at z = 0 and z = h,

vx(y, z) =
∆p

4ηL

(
a2 − y2 − z2

)
, circular channel of radius a, (2.8a)

vx(z) =
∆p

2ηL

(
h− z

)
z, parallel-plate channel of height h. (2.8b)

It can easily be verified by inspection that these solutions are correct.
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2.3 Flow rate

Once the velocity field is determined, it is possible to calculate the so-called volumetric
flow rate Q, which is defined as the fluid volume discharged by the channel per unit time.
In the case of the geometry of Fig. 2.1 we have

Q =

∫

C
dy dz vx(y, z) = A vavr, (2.9)

where vavr = (1/A)
∫
C dy dz vx(y, z) is the average velocity and A is the cross-section area.

The flow rate for three selected Poiseuille flows are

Q =
πa4

8ηL
∆p, circular channel of radius a, (2.10a)

Q =
h3w

12ηL
∆p, parallel-plate channel of height h ¿ w, (2.10b)

Q ≈
[
1− 0.630

h

w

]
h3w

12ηL
∆p, rectangular channel of height h ≤ w. (2.10c)

The Poiseuille flow in a rectangular channel of height h and width w cannot be solved
analytically in a closed form. However, the error of the approximative result (2.10c) is
just 13% for the worst case (a square with h = w), while already at an aspect ratio of a
half (h = w/2) it has decreased to 0.2%.

The SI unit of flow rate is m3 s−1, but in microfluidics volume is often measured in
µL = mm3 and time in minutes, so the following conversion factors are useful,

1 µL s−1 = 10−9 m3 s−1, and 1 µL min−1 = 1.67× 10−11 m3 s−1. (2.11)

2.4 Circuit modeling; hydraulic resistance

Above we have found that a constant pressure drop ∆p results in a constant flow rate Q.
This result can be summarized in the Hagen–Poiseuille law

∆p = Rhyd Q, or Rhyd =
∆p

Q
, (2.12)

where we have introduced the proportionality factor Rhyd known as the hydraulic resis-
tance; a central concept in characterizing and designing microfluidic channels in lab-on-a-
chip systems, see list in Table 2.1. The SI units used in the Hagen–Poiseuille law are

[Q] =
m3

s
, [∆p] = Pa =

N

m2
=

kg

m s2
, [Rhyd] =

Pa s

m3
=

kg

m4 s
. (2.13)

The Hagen–Poiseuille law is completely analogous to Ohm’s law, ∆V = R I, relating
the electrical current I through a wire with the electrical resistance R of the wire and
the electrical potential drop ∆V along the wire. In hydraulic systems volume is moved
while in electric systems charge is moved. Q is volume per time as I is charge per time.
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Table 2.1: A list of the hydraulic resistance for straight channels with different cross-
sectional shapes. The numerical values are calculated using the following parameters:
η = 1 mPa s (water), L = 1 mm, a = 100 µm, b = 33 µm, h = 100 µm, and w = 300 µm.

shape length Rhyd Rhyd Rhyd

parameters expression [1011 Pa s
m3 ] [Pa s

µL ]

circle
a 8

π
ηL

1

a4
0.25 25

ellipse
b a 4

π
ηL

1 + (b/a)2

(b/a)3
1

a4
3.93 393

triangle a a

a
320√
3
ηL

1

a4
18.5 1850

two plates
h

w 12 ηL
1

h3w
0.40 40

rectangle
h

w
12 ηL

1− 0.63(h/w)

1

h3w
0.51 51

square
h h

h

h
28.4 ηL

1

h4
2.84 284

parabola
h

w
105

4
ηL

1

h3w
0.88 88

arbitrary
P A ≈ 2 ηL

P2

A3
– –

Likewise, ∆p is energy per volume as ∆V is energy per charge. Hydraulic power is Q∆P
(vol/time × energy/vol) while electric power is I∆V (charge/time × energy/charge).

For low Reynolds numbers fluid flow is described by the linear Stokes equation, and
to a good approximation the hydraulic resistances obey the same rules for series and
parallel coupling as the electric resistances in linear circuit theory. Thus for two hydraulic
resistance R1 and R2 we have

Rseries
hyd = R1 +R2, and Rparallel

hyd =

(
1

R1

+
1

R2

)−1

=
R1 R2

R1 +R2

. (2.14)

For a general fluidic network or circuit one can apply Kirchhoff’s laws,

a) The sum of flow rates entering/leaving any node in the circuit is zero.
b) The sum of all pressure differences in any closed loop of the circuit is zero.

(2.15)
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2.5 Circuit modeling; hydraulic compliance

The analogy between hydraulic and electric systems can be taken one step further. When
the pressure increases by ∆p in a liquid inside an elastic channel, the volume available to
the liquid increases by ∆V. This is analogous to the charging of a capacitor where in in-
crease in voltage by ∆V increases the charge on the capacitor by ∆q = C∆V . The electric
capacitance is given by C = ∂q/∂V , and we are led to introduce hydraulic capacitance
Chyd, also known as compliance, given by

Chyd ≡ dV
dp

, with [Chyd] = m3 Pa−1. (2.16)

As an example of compliance we consider a simple model of a soft-walled channel
filled with an incompressible liquid as sketched in Fig. 2.2(a). If the pressure increases
inside the channel, the latter will expand. The compliance Chyd of the channel is a given
constant related to the geometry and the material properties of the channel walls. As
a simplification we model the channel as consisting of two subchannels with hydraulic
resistances R1 and R2, respectively, connected in series. The pressure pc at the point,
where the two subchannels connect, determines the expansion of the whole channel. The
equivalent model is seen in Fig. 2.2(b). We let the pressure at the inlet be p∗ for time
t < 0 and p∗+∆p for time t > 0. The flow rate at the inlet and the outlet are given by the
Hagen–Poiseuille law Q1 = (p∗ +∆p− pc)/R1 and Q2 = (pc − p∗)/R2, respectively, while
the rate of volume expansion inside the chamber is given by Qc = ∂tV = Chyd∂tpc. Since
the liquid is assumed to be incompressible, conservation of mass leads to Q1 = Q2 +Qc,
and we arrive at the following differential equation for the pressure pc inside the channel:

∂tpc = −
( 1

τ1
+

1

τ2

)
pc +

( 1

τ1
+

1

τ2

)
p∗ +

1

τ1
∆p, (2.17)

(a)

p
∗
+

∆
p

R1 R2

Q1 Q2
Qc pc

p∗

soft wall, Chyd

liquid

(b)

p
∗
+
∆
p

p
c

R1 R2

Chyd

p∗

Figure 2.2: (a) Compliance due to a soft-walled channel (dark gray) filled with liquid
(light gray). The pressure in the center of the channel is denoted pc, while the hydraulic
resistances of the first and second part of the channel are denoted R1 and R2, respectively.
Mass conservation yields Q1 = Q2+Qc. (b) The equivalent circuit diagram corresponding
to the soft-walled channel of panel (a), where R1 and R2 are the hydraulic resistances of
each part of the channel, while Chyd is the compliance of the soft wall.
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where τ1 = R1Chyd and τ2 = R2Chyd are the hydraulic RC times. The solution,

pc(t) = p∗ +
(
1− e−

[
τ−1
1 +τ−1

2

]
t
) τ2
τ1 + τ2

∆p, (2.18)

is analogous to the voltage across a capacitor being charged through a voltage divider.
Often the external tubing may lead to long transient times in the external system due

to the RC-time
τRC = RhydChyd (2.19)

arising from the hydraulic resistance Rhyd and compliance Chyd. The thick-wall approxi-
mation for the compliance of a tube can be derived from basic theory of elasticity [Landau
1986]. It turns out to be independent of the thickness of the wall,

Ctube
hyd ≈ 2π(1 + ν̄)

a2L

Y
. (2.20)

Here a is the inner radius of the relaxed tube, L the length, ν̄ the Poisson ratio, and Y
Young’s modulus. As an example of transient times consider a tube of with L = 1 m
and a = 0.1 mm leading from a syringe pump to a lab-on-a-chip device. For water in
such tubes made of either soft silicone rubber (Y = 2.1 MPa and ν̄ = 0.49) or hard teflon
Y = 0.5 GPa and ν̄ = 0.45) we get

Silicone: Rhyd = 2.5× 1013
Pa s

m3
, Chyd = 4.7× 10−14 m3

Pa
, τRC = 1.2 s, (2.21a)

Teflon: Rhyd = 2.5× 1013
Pa s

m3
, Chyd = 1.8× 10−16 m3

Pa
, τRC = 4.6× 10−3 s.

(2.21b)

2.6 Circuit modeling; hydraulic inductance

The last analogy relates to inductance. The (self-)inductance Lel, or the electric inertia,
is the ability of an electric system to maintain a given current I. A rate of change ∂tI in
the current induces a potential drop ∆V = Lel∂tI. Hydraulic inductance Lhyd therefore
relates to maintaining an existing volume current Q = Avavr. Since the rate of change
∂tQ = A∂tvavr involves acceleration, it follows that Lhyd corresponds to inertia.

Consider the flow through a channel of length L and cross-section area A. If the force
F driving the flow arises from a pressure drop ∆p, we find from Newton’s second law that
∆p = F/A = (ρLA)∂tvavr/A. This leads to ∆p = (ρL/A) ∂tQ, from which we can read
off the hydraulic inductance Lhyd as

Lhyd =
ρL

A , with [Lhyd] = Pa s2 m−3. (2.22)

In analogy with the RC-time there is also a transient RL-time given by τRL = Lhyd/Rhyd,
which for a tube becomes

τ tubeRL =
Lhyd

Rhyd

=
ρa2

8η
=

a2

8ν
, (2.23)
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Figure 2.3: An example of an application of circuit modeling: an ac pressure source running
up to 1 kHz and driving oscillations in an air bubble placed in an elastic silicone tube. (a)
Circuit model of the systems containing the pressure source, a syringe pump, a pressure
sensor, and the elastic tube containing the air bubble. (b) Picture of the experimental
setup. (c) Sketch of the setup showing the four components. Adapted from the DTU
master thesis by Søren Vedel [Vedel 2009].
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where in the last equality we have used the kinematic viscosity ν from Eq. (1.44). For the
tubes in the previous subsection with L = 1 m and R = 0.1 mm we find

Rhyd = 2.5× 1013
Pa s

m3
, Lhyd = 3.2× 10−10 Pa s2

m3
, τRC = 1.2× 10−3 s. (2.24)

2.7 Circuit modeling; an example

We end the chapter by showing an example of the application of circuit modeling on
an actual system [Vedel 2010]. The system is built to apply pulsatile microfluidics as
an analytical tool for determining the dynamic characteristics of microfluidic systems in
general. As a particular case, an air bubble placed in a tube is monitored while exposed
to a pulsatile pressure drop.

The system is presented in Fig. 2.3, and it consists of four parts: (i) a membrane pump
capable of delivering pulsatile pressures up to 1 bar and with frequencies up to 1 kHz,
(ii) a pressure sensor for monitoring the pressure during operation, (iii) a transparent,
elastic rubber tube containing an air bubble, and (iv) a syringe pump for filling the system
with water and adjusting the position of the air bubble. Not shown on the figure is the
microscope and CCD camera by which the oscillations of the air bubble inside the tube
was observed and recorded.

The system is modeled using the detailed circuit model shown in Fig. 2.3(a). Due to
the ac drive the concept of impedance is introduced in analogy with electric ac circuits,
e.g. the impedance of a tube with a resistance and an inductance is Ztube = Rhyd+iωLhyd,
where ω is the angular frequency.

In Fig. 2.4(a) is shown a raw image of the air bubble in the compliant tube, and in
Fig. 2.4(b) the measured motion of the left and right bubble interfaces are compared to
the prediction of the circuit model. A good agreement is found thus demonstrating the
usefulness of the circuit model approach.
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Figure 2.4: (a) A raw bubble image recorded by the CCD camera showing part of the tube
exiting the pressure source chamber; the right end of the tube is connected to the pressure
source while the left end is left in atmospheric conditions. The bubble is found roughly in
the middle of the tube. A mm-scale ruler (inverted and mirrored) is positioned above the
tube. (b) Experimental results (thick lines) compared to modeled bubble displacements
(balck/red curves correspond to left/right bubble interface) for 50 Hz oscillations (simple
model: starred thin lines, extended model: thin lines with triangles). Good agreement is
found between the models and the experiments through the entire frequency range, but
the simple model predicts displacement amplitudes and phase-lags better. Both models
capture the leading interface displacement slightly better than the displacement of the
trailing interface. Adapted from the DTU master thesis by Søren Vedel [Vedel 2009].



Chapter 3

Diffusion

The handling of aqueous solutions of microparticles, biological cells, and biomolecules is
central to microfluidics and lab-on-a-chip technoloby. The carrier liquid is denoted the
solvent and the particle constitute is called the solute. Diffusion is the motion of the
solute in the solvent from regions of high to low concentrations of the solute resulting
from thermally induced random motion of the particles, such as Brownian motion. Pure
diffusion of the solute occurs when the velocity field of the solvent is zero, while in case of
non-zero velocity fields the motion of the solute is partly convective, since the dissolved
particles are carried along by the solvent.

3.1 A random-walk model of diffusion

To establish some basic features of diffusion, we first study it in terms of the simple
constant-step random-walk model. At first we restrict the analysis to motion in one spatial
dimension along the x axis. Such a 1D random walk consists of a number of consecutive,
uncorrelated steps. Each step i takes the same time τ during which the particle moves
the distance ∆xi = ±`, where ` is a constant step length. We assume that there is equal
probability for choosing either sign, and that the steps are statistically uncorrelated as is
expressed mathematically through the mean value 〈∆xi∆xj〉 as

〈∆xi∆xj〉 = `2 δij . (3.1)

At time t = 0 the particle is at x = x0 = 0. At time t = Nτ the particle has performed
N steps, and it is at the position xN given by

xN =

N∑

i=1

∆xi, ∆xi = ±`, (3.2)

with a random distribution of plus and minus signs. In Fig. 3.1(a) is shown the distribution
of the final position XN for N = 6. Such a random walk can be analyzed in terms of the
binomial distribution, which in the limit of large N approaches the normal distribution.

21



22 CHAPTER 3. DIFFUSION

(a)

F
re
q
u
en

cy

N = 6
0.1

0.2

0.3

−6 −4 −2 0 2 4 6
x

`

(b)

N = 0

t = 0

(c)

N = 26

t = 64 τ

(d)

N = 28

t = 256 τ

Figure 3.1: (a) Frequency plot of the final position XN in a constant-step 1D random walk
for N = 6. For large N the distribution approaches the normal distribution (full line).
(b)-(d) Constant-step 2D random walk with step length ` = 0.05 illustrating molecular
diffusion. At N = 0 81 particles are place near the origin of the co-ordinate system cov-
ering −4 < x < 4 and −4 < y < 4. The position of the particles are shown after N = 0,
N = 26, and N = 28 random-walk steps corresponding to the times t = 0, 64 τ , and 256 τ .

In the following, however, we analyze the random walk directly in terms of the statistics
of the step sequence.

Consider M constant-step 1D random walks ending at x
(j)
N , j = 1, 2, . . . ,M . Each of

these random walks consists of N random steps ∆x
(j)
i = ±`. The mean value 〈xN 〉 of the

final positions is

〈xN 〉 ≡ 1

M

M∑

j=1

x
(j)
N =

1

M

M∑

j=1

(
N∑

i=1

∆x
(j)
i

)
=

N∑

i=1

(
1

M

M∑

j=1

∆x
(j)
i

)
=

N∑

i=1

〈∆xi〉 = 0. (3.3)

The last equality follows from the assumption of equal probability for stepping either +` or
−`. As expected, the mean value is zero, and clearly the quantity 〈xN 〉 does not reveal the
kinematics of diffusion. We therefore continue by calculating 〈x2N 〉 related to the statistical
standard deviation in the final position of the particles,

〈x2N 〉 ≡ 1

M

M∑

j=1

[
x
(j)
N

]2
=

1

M

M∑

j=1

(
N∑

i=1

∆x
(j)
i

)(
N∑

k=1

∆x
(j)
k

)
=

1

M

M∑

j=1

N∑

i=1

N∑

k=1

∆x
(j)
i ∆x

(j)
k ,

(3.4)
where different summation indices i and k are used in the product term. Now follows a
trick often used in statistics. In the ik double sum we collect the terms where k = i, the
so-called diagonal terms, and those where k 6= i, the so-called offdiagonal terms. This
enables a straightforward evaluation of the average over the ensemble of random walks j,

〈x2N 〉 = 1

M

M∑

j=1

(
N∑

i=1

[
∆x

(j)
i

]2
+

N∑

i=1

N∑

k 6=i

∆x
(j)
i ∆x

(j)
k

)
= N`2+

N∑

i=1

N∑

k 6=i

〈∆x
(j)
i ∆x

(j)
k 〉. (3.5)

In the last equality we have used that
[
∆x

(j)
i

]2
= (±`)2 = `2 regardless of the sign of

the random step. Now, since k 6= i in the last term it follows that ∆x
(j)
i and ∆x

(j)
k are
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statistically independent, so the probability of having the summand equal to (+`)(−`) =
(−`)(+`) = −`2 is the same as that of having (+`)(+`) = (−`)(−`) = +`2. Thus, the last
term vanish upon averaging over random walkers, and we get

〈x2N 〉 = N`2. (3.6)

From Eqs. (3.3) and (3.6) we find the root-mean-square displacement by diffusion, the
so-called diffusion length `1Ddiff,N , of the random walker taking N steps in 1D to be

`1Ddiff,N ≡
√
〈x2N 〉 − 〈xN 〉2 =

√
N `. (3.7)

Reintroducing time as t = Nτ , where τ is the time it takes to perform one step, leads to

`1Ddiff(t) =

√
t

τ
` =

√
`2

τ
t =

√
2Dt, (3.8)

where the so-called diffusion constant D has been introduced,

D ≡ `2

2τ
, (3.9)

together with a factor of 2 for later convenience. Conversely, the time t1Ddiff(`) it takes to
cover a distance ` by diffusion, the so-called diffusion time, is given by

t1Ddiff(`) =
`2

2D
. (3.10)

It is a typical and remarkable feature of diffusion kinematics that the diffusion length
depends on the square-root of time, as seen in Eq. (3.8). Ultimately, this dependence
makes diffusion an extremely slow process of mixing over macroscopical distances. Even
in microfluidic systems diffusion may still be a very slow process, see Eq. (3.22).

The random-walk model of diffusion is easily extended to the 2D xy-plane. Starting
at the origin, the particle position RN after N steps ∆ri is given by

RN =

N∑

i=1

∆ri, ∆ri = (±`) ex + (±`) ey, (3.11)

where there is an equal probability for any combination of the signs. If we decompose the
motion in x and y components, which are statistically independent, we find

〈R2
N 〉 = 〈x2N + y2N 〉 = 〈x2N 〉+ 〈y2N 〉 = 2N`2. (3.12)

Thus, in 2D (an trivially extended to 3D) the diffusion length becomes

`2Ddiff(t) =
√
2N ` =

√
4Dt and `3Ddiff(t) =

√
6Dt. (3.13)

A numerical example of such a 2D random walk is shown in Fig. 3.1(b)-(d).
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3.2 The convection-diffusion equation for weak solutions

To formulate a differential equation for diffusion we introduce the concentration field
cα(r, t) for the number of particles of species α per volume at the point r and time t.
Neglecting chemical reactions, the number of particles is conserved, and we can use the
same method involving fluxes and Gauss’s theorem as in Section 1.3 for conservation of
mass.

Considering the arbitrary volume Ω, we note that the number of particles α can change
in time in two ways; by a convection current cα v and by a diffusion current Jdiff , yet to
be determined. In analogy with Eqs. (1.21) and (1.22) we obtain

∫

Ω
dr ∂tcα =

∫

∂Ω
da (−n)·(cαv + Jdiff

)
= −

∫

Ω
dr∇·(cαv + Jdiff

)
. (3.14)

This equation can only be true for arbitrary Ω if the integrands are identical, and further
using that for an incompressible fluid we have ∇·v = 0, we arrive at

∂tcα + v·∇cα = −∇·Jdiff . (3.15)

The diffusion current density Jdiff is non-zero only when gradients in the density of the
solute are present. For weak solutions we expect only the lowest-order gradients to play a
role, which is expressed by Fick’s law,

Jdiff
α = −Dα ∇cα. (3.16)

Inserting Fick’s law into Eq. (3.15) leads to the convection-diffusion equation for the
concentration cα of solutes in weak solutions having a velocity field v,

∂tcα + v·∇cα = Dα ∇2cα. (3.17)

The constant Dα is in analogy with Eq. (3.9) known as the diffusion constant or the
diffusivity of solute α in the solvent,

Dα with [Dα] = m2 s−1: Diffusivity of solute α in the solvent. (3.18)

3.3 The diffusion equation for mass, momentum, and heat

In the following we consider the diffusion of a single solute and therefore suppress the
index α. If the velocity field v of the solvent is zero, convection is absent and Eq. (3.17)
becomes the diffusion equation,

∂tc = D ∇2c. (3.19)

Simple dimensional analysis of this equation can already reveal some important physics.
It is clear that if T0 and L0 denotes the characteristic time and length scale over which
the concentration c(r, t) varies, then

L0 =
√

DT0 or T0 =
L2
0

D
, (3.20)
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which resembles Eq. (3.8). The diffusion constant D thus determines how fast a concen-
tration diffuses a certain distance. Typical values of D are

D ≈ 2× 10−9 m2/s, small ions in water, (3.21a)

D ≈ 5× 10−10 m2/s, sugar molecules in water, (3.21b)

D ≈ 4× 10−11 m2/s, 30-base-pair DNA molecules in water, (3.21c)

D ≈ 1× 10−12 m2/s, 5000-base-pair DNA molecules in water, (3.21d)

which for diffusion across the typical microfluidic distance L0 = 100 µm give the times

T0(100 µm) ≈ 5 s, small ions in water, (3.22a)

T0(100 µm) ≈ 20 s, sugar molecules in water, (3.22b)

T0(100 µm) ≈ 250 s ≈ 4 min, 30-base-pair DNA molecules in water, (3.22c)

T0(100 µm) ≈ 104 s ≈ 3 h, 5000-base-pair DNA molecules in water. (3.22d)

It is not only mass that can diffuse as described above. In fact, we have already
encountered the diffusion equation in Eqs. (1.44) and (1.55) in context of momentum and
heat. Taken as a whole, we have established that both mass, momentum and energy can
diffuse, and that that this diffusion in all three cases is described by the diffusion equation,

∂tvx = ν ∇2vx, momentum diffusion with ν ≈ 10−6 m2/s, (3.23a)

∂tT = Dth∇2T, heat diffusion with Dth ≈ 10−7 m2/s, (3.23b)

∂tc = D∇2c, mass diffusion with D ≈ 10−9 m2/s. (3.23c)

Using Eq. (3.20) we can estimate the following diffusion times in a microfluidic channel
with radius a for momentum, heat and mass:

Tmom.
0 =

a2

ν
≈ 0.01 s, T heat

0 =
a2

Dth

≈ 0.1 s, Tmass
0 =

a2

D
≈ 10 s. (3.24)

Thus momentum diffuses faster than heat, which diffuses faster than mass.

3.4 Analytical solutions to the diffusion equation

As already hinted at in Fig. 3.1, diffusion can be described by the normal distribution. We
denote this distribution P (s), where s is a normalized dimensionless variable with mean
value 〈s〉 and variance 〈s2〉, the width of the distribution. Its basic properties are

P (s) ≡ 1√
2π

e−
1
2
s2 , 〈s〉 =

∫ ∞

−∞
ds s P (s) = 0, 〈s2〉 =

∫ ∞

−∞
ds s2 P (s) = 1. (3.25)

These results will be useful in the following analysis of diffusion.
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Limited point-source diffusion. Consider a fixed numberN0 of molecules is injected
at position x = 0 at time t = 0 in the middle of a infinitely thin and infinitely long water-
filled tube aligned along the x axis. The initial point-like concentration acts as the source
of the diffusion, and it can be written as a Dirac delta function1

c(x, t = 0) = N0 δ(x). (3.26)

The ink molecules immediately begins to diffuse out into the water, and by inspection it
can be shown that the solution to the diffusion equation (3.19), which in 1D reduces to
∂tc = D∂ 2

x c, given the initial condition Eq. (3.26) is

c(x, t) = N0 (4πDt)−
1
2 exp

[
− x2

4Dt

]
= N0 P (sx), (3.27)

where we have introduced the normal distribution P (sx) of the dimensionless variable

sx ≡ x2

2Dt
. (3.28)

It is natural to define the square `2diff,1D of the 1D diffusion length `diff,1D as the width of
the distribution. So from Eqs. (3.25), (3.27) and (3.28) we get

`2diff,1D ≡ 〈x2〉 = 2Dt 〈s2x〉 = 2Dt. (3.29)

Generalization of this result to 2D and 3D with the initial conditions c(x, y, t = 0) =
N0 δ(x) δ(y) and c(x, y, z, t=0) = N0 δ(x) δ(y) δ(z), respectively, gives

c(x, y, t) = N0 (4πDt)−1 exp
[
− x2 + y2

4Dt

]
= N0 P (sx)P (sy), (3.30)

and

c(x, y, z, t) = N0 (4πDt)−
3
2 exp

[
− x2 + y2 + z2

4Dt

]
= N0 P (sx)P (sy)P (sz), (3.31)

where we have introduced the two dimensionless variables sy = y2/(2Dt) and sz =
z2/(2Dt). The 3D result Eq. (3.31) for c(x, y, z, t) is presented in Fig. 3.2(a). In 2D
and 3D `2diff becomes

`2diff,2D ≡ 〈r2〉2D = 〈x2 + y2〉 = 2Dt 〈s2x + s2y〉 = 4Dt, (3.32a)

`2diff,3D ≡ 〈r2〉3D = 〈x2 + y2 + z2〉 = 2Dt 〈s2x + s2y + s2z 〉 = 6Dt, (3.32b)

and we see that the diffusion lengths (not their squares) are
√
2 and

√
3 times larger in

2D and 3D, respectively, than that in 1D.
Limited planar-source diffusion. Another limited diffusion process is limited

planar-source diffusion. Let the semi-infinite half-space x > 0 be filled with some liq-
uid. Consider then an infinitely thin slab covering the yz-plane at x = 0 containing n0

1The Dirac delta function δ(x) is defined by: δ(x) = 0 for x 6= 0 and

∫ ∞

−∞
dx δ(x) = 1.
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Figure 3.2: Concentration profiles c(r, t > 0) choosing the length scale to be L0, which
fixes the time scale to be T0 = L2

0/D. (a) Limited point-source diffusion c(r, t∗) Eq. (3.31)
for three given times t∗ = 0.25T0, 0.5T0, and T0. (b) Constant planar-source diffusion
c(x, t∗) Eq. (3.34b) for three given times t∗ = 0.1T0, T0, and 10T0.

molecules per area that at time t = 0 begin to diffuse out into the liquid. With a factor 2
inserted to normalize the half-space integration, the initial condition and solution is

c(r, t = 0) = n0 2δ(x), (3.33a)

c(r, t > 0) =
n0

(πDt)
1
2

exp
(
− x2

4Dt

)
. (3.33b)

Constant planar-source diffusion. We end by an example of diffusion with a con-
stant source, i.e. an influx of solute is maintained at one of the boundary surfaces. Consider
the same geometry as in the previous example, but change the boundary condition as fol-
lows. At time t = 0 a source filling the half-space x < 0 suddenly begins to provide
an influx of molecules to the boundary plane x = 0 such that the density there remains
constant c0 at all later times. The initial condition and solution is, see Fig. 3.2(b),

c(x = 0, y, z, t > 0) = c0, (3.34a)

c(x, y, z, t > 0) = c0 erfc

(
x√
4Dt

)
, (3.34b)

where we have introduced the complementary error function erfc(s) ≡ 2√
π

∫∞
s e−u2

du.

3.5 Taylor dispersion; a convection-diffusion phenomenon

We now step up in complexity and allow the solvent to have a nonzero velocity field v,
thus moving from pure diffusion to convection-diffusion. Let us first follow the Reynolds
number analysis of Section 1.5, and determine the dimensionless number characterizing
the convection-diffusion equation (3.17). Using the same dimensionless co-ordinates and
velocity as in Eq. (1.38a), we find in analogy with Eq. (1.40) that Eq. (3.17) becomes

Pé
[
∂̃ tc̃ +

(
ṽ ·∇̃)

c̃
]
= ∇̃2

c̃, (3.35)
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Figure 3.3: A sketch of the Taylor dispersion problem in a cylindrical microchannel of
radius a with a steady Poiseuille flow (horizontal arrow v). (a) The initial flat concentra-
tion (dark gray) of the solute. (b) Neglecting diffusion the solute gets stretched out into
a paraboloid-shaped plug. (c) Including diffusion, indicated by the vertical arrows, the
deformed concentration profile gets evened out.

where the so-called Péclet number Pé appears. It is given by

Pé =
V0L0

D
=

convection speed

diffusion speed
. (3.36)

The convection speed is the chosen velocity scale V0, while the diffusion speed is defined
as diffusion length divided by diffusion time, or vdiff =

√
DT0/T0 = L0/(L

2
0/D) = D/L0.

For high Péclet numbers, where V0 À vdiff and convection thus happens much faster
than diffusion, the terms on the left-hand side of the convection-diffusion equation domi-
nate, and we are in the convection-dominated regime. Conversely, for low Péclet numbers,
where V0 ¿ vdiff and diffusion happens much faster than convection, the terms on the
right-hand side dominate, and we are in the diffusion dominated regime.

In the Taylor dispersion problem, sketched in Fig. 3.3 we consider a homogeneous
band of solute placed in the microchannel at t = 0 and study how this concentration
profile disperses due to convection from the Poiseuille flow and due to diffusion from the
concentration gradients. If diffusion did not play any role the band of solute would become
stretched into an increasingly longer paraboloid-shaped band due to the Poiseuille flow.
However, diffusion is present and it counteracts the stretching: in the front end of the
concentration profile diffusion brings solute particles from the high concentration near the
center out towards the low concentration sides, whereas in the back end it brings solute
particles from the high-concentration sides towards the low concentration near the center.
As we shall see, the result is a quite evenly shaped plug moving downstream with a speed
equal to the average Poiseuille flow velocity V0.

We can get a good insight into the nature of Taylor dispersion by the following heuristic
argument. We are interested in estimating the effective diffusion constantDeff for diffusion
along the x axis of a long, narrow cylinder of radius a. For a given time interval t there is
the ever present Brownian diffusion, which yields a contribution Dt to the square of the
diffusion length along the x axis. However, due to the convection flow there is one more
contribution.

For simplicity imagine the liquid of the cylinder parted into three concentric cylinder
shells each of thickness a/3, the middle of which moves with the average flow velocity
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V0. Let us now fix the time interval t so that it correspond to the time it takes to
diffusive radially the distance a/3, i.e. t ≡ a2/(9D). We note that this radial diffusion
is transformed into an axial motion by the flow, because a random jump form one liquid
shell to its neighbor will result in an axial displacement of ±(V0/2) t as the liquid shells
move relative to each other approximately with the speed V0/2.

The square of the axial diffusion length can therefore be written as the sum of the two
above-mentioned contributions,

`2diff ≈
[√

Dt

]2
+

[
V0t

2

]2
=

[
D +

V 2
0 t

4

]
t =

[
D +

V 2
0 a

2

36D

]
t. (3.37)

Using the standard diffusion relation `2 = Dt, Eq. (3.37) leads to the prediction of an
effective axial diffusion constant Deff . In more an accurate calculation [Aris 1954] the
number 36 is replaced by 48, and the final result for the effective diffusion constant or
Taylor diffusivity is

Deff ≈ D +
V 2
0 a

2

48D
=

[
1 +

Pé 2

48

]
D. (3.38)

3.6 The Einstein diffusivity of particles

There exist a remarkably simple expression for the diffusivity D of a spherical particle.
To derive this so-called Einstein diffusivity we consider a sphere of radius a moving with
velocity v through a liquid of viscosity η experiences the Stokes drag force Fdrag given by

Fdrag = −6πηau. (3.39)

Consider a position-dependent solution of density c(r) of spherical molecules. Due to
gradients in the density these molecules will diffuse with a velocity u according to Fick’s
law, J = cu = −D ∇c. Since the chemical potential µ by definition is the free energy of
the last added molecule, the force Fdiff driving the diffusion is given by minus the gradient
of µ,

Fdiff = −∇µ = −kBT

c
∇c, (3.40)

where we have used the ideal-gas expression µ(T, ρ) = µ0 + kBT ln(c/c0) valid for low
concentrations. The concentration-dependent term is due to entropy.

In steady state the forces from diffusion and drag balance each other, Fdiff = Fdrag.
Writing the latter force as

Fdrag = 6πηa u =
6πηa

c
J = −6πηa

c
D∇c, (3.41)

the Einstein diffusivity follows from Eqs. (3.40) and (3.41),

D =
kBT

6πηa
. (3.42)
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Here, kB is Boltzmann’s constant, and it is useful to note that at room temperature
kBT = 4.14× 10−21 J. For a microbead with a = 0.5 µm frequently used in microfluidics
and for an ion-sized bead with a = 0.1 nm diffusing in water at 300 K, we find from
Eq. (3.42)

Dbead(0.5 µm, 300 K) = 4.4× 10−13 m2 s−1, (3.43a)

Dbead(0.1 nm, 300 K) = 2.2× 10−9 m2 s−1. (3.43b)

Note the good agreement between the prediction Eq. (3.43b) and the table value Eq. (3.21a).
As in the force balance argument above, we often utilize that the inertia of a micropar-

ticle moving in a viscous liquid is negligible. To verify this assumption we end this chapter
by calculating the transient time for a sphere of radius a and mass (4π/3)a3ρsph moving
under the influence of an external force. Initially, both the sphere and the fluid are at
complete rest. Suddenly, at time t = 0 a constant external force Fext ex begins to act
on the sphere. As the force is constant all motion in the following takes place along the
direction given by ex, and the resulting velocity of the sphere is denoted u(t) = u(t) ex.
The equation of motion for the sphere becomes

4
3πa

3ρsph∂tu = −6πηa u+ Fext. (3.44)

The solution to this standard differential equation is

u(t) =
Fext

6πηa
− u0 exp

(
− 9η

2ρspha
2
t
)
, (3.45)

where u0 is an integration constant to be specified by the boundary conditions. If the
sphere is at rest for t = 0 then

u(t) =
Fext

6πηa

[
1− exp

(
− 9η

2ρspha
2
t
)]

. (3.46)

The characteristic time scale τacc appearing in the exponential is very small for a mi-
crospheres. For a cell with a ≈ 5 µm and a density nearly equal to that of water, we
find

τacc =
2ρspha

2

9η
≈ 5 µs. (3.47)

Thus, in a viscous environment inertial forces are indeed negligible, and for the case of the
microsphere it is reasonable to assume that it is always moving in local steady state.
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M4 Fundamental Electroacoustics  
  



Electromechanical Systems & Transducers. 
Martyn Hill. Tuesday 0945.   

More detailed treatments of the principles of electroacoustics can be found in Hunt [1], Hueter and 
Bolt [2], Stansfield [3], and Kinsler and Frey [4] chapter 14. 

Network representations of transducers and impedance 
Electromechanical transducers have, by definition, both electrical and mechanical components.  Their 
behaviour has traditionally been described by models that use electromechanical analogies (typically 
that apportion equivalent electrical characteristics to the mechanical component).   

We shall consider the behaviour of thickness-mode piezoelectric transducers using a simple lumped 
element equivalent circuit, a two-port circuit model and a three port model.  The detailed behaviour of 
the piezoelectric material itself will be covered in the following lecture. 

Equivalent circuit model 

 
Figure 1.  Equivalent circuit model for a thickness-mode piezoelectric transducer 

Figure 1 shows an equivalent circuit model for a thickness mode piezoceramic transducer operating 
near its first thickness resonant frequency.  The transducer is driven by voltage Vin and at low 
frequencies the response is dominated by its clamped capacitance C0, the capacitance of the disk when 
its dimensions are not modified by electromechanical coupling.  The other purely electrical parameters 
are Rs and Rp.  These represent electrical losses within the transducer: Rp due to leakage current and Rs 
due to higher frequency dielectric resistive losses.  Parameters Cm, Lm, and Rm denote the electro-
mechanical equivalences of capacitance, inductance and resistance respectively, and Cm and Lm can be 
determined through calculating the mechanical parameters of the transducer using the method 
described by Stansfield [3] and Hueter and Bolt [2].  The mechanical resistance Rm, along with other 
damping values within the system, are often estimated experimentally.  The impedance Z0 denotes the 
electro-mechanical equivalent impedance that the transducer is driving.  If the transducer is operating 
in a vacuum, or a very low acoustic impedance this will appear as an electrical short circuit. 

It is important to note that in such a model: 

• does not take account of dynamic behaviour in the out-of-thickness directions.  For a plate or 
disk in which the thickness is much less than the lateral dimensions a series of resonances at 
frequencies much lower than the mode of interest will exist in reality but will not be predicted 
by the model 

• is only applicable at frequencies up to and a little above the first thickness mode.  This is due 
to the need to make simplifying assumptions about the motion of the piezoceramic in order to 
reduce its dynamic response to straightforward electrical equivalences 

In the most common electro-mechanical analogy the mechanical capacitance, C
m
, represents the 

compliance (inverse of stiffness) of the piezoceramic and the mechanical inductance, L
m
, represents 

the mass of the transducer.   

C0 

Rs 

Rp 

Rm Cm 

Lm 

Z0 
Vin 



An important use of equivalent circuit models is to estimate its electrical input characteristics.  
Electrical impedance and admittance are amongst the easiest parameters to measure either of an 
isolated transducer of a transducer that is coupled to a device of interest.   

Electrical impedance 
The impedance of an electrical circuit is defined as the ratio of the complex voltage to the complex 
current: 

VZ R jX
I

= = +  
(1) 

where the real part of the impedance, R , is the resistance and the imaginary part, X , is the 
reactance.  The reactive elements of the equivalent circuit shown in Figure 1 are the inductor and the 
capacitors (plus any reactive component of the load impedance, 0Z ) and it is from these reactive 
elements that the frequency dependence of the impedance comes, with the impedance of a capacitor 
being: 

1Z
j Cω

=  
(2) 

and that of an inductor being 

Z j Lω=  (3) 

It is clear that the input impedance into the circuit of Figure 1 will change as 0Z  changes, just as the 
measured impedance of a transducer will change depending on the loading of the transducer.  Hence 
two special input impedance conditions are typically defined for an acoustic transducer: 

• the blocked impedance, when the transducer is constrained from moving – equivalent to 

0Z = ∞ , an open circuit, in Figure 1 
• the free impedance, when the transducer is free to move without constraint - equivalent to 

0 0Z = , an open circuit, in Figure 1 

Figure 2 shows a plot of the impedance of the circuit driving into air (approximating the free 
impedance) using parameter values that are representative of a 1 MHz transducer. 

 
Figure 2.  Magnitude of the free impedance of the circuit in Figure 1 

 

Away from the resonance the behaviour is dominated by the electrical terms C0, Rs and Rp.  However 
near the resonance the mechanical parameters become dominant.  An impedance minimum can be 
seen just below 1 MHz and an impedance maximum at about 1.1 MHz.  These features can be seen 
more clearly on the logarithmic plot of Figure 3 which also shows the phase of the impedance. 
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Figure 3.  Phase and magnitude of circuit within vicinity of resonance. 

The impedance minimum lies very close to the frequency at which the phase rises through zero (and 
the reactance passes through zero).  This is known as the series resonance of the transducer, or 
simply the resonance frequency.  The impedance maximum lies close to the frequency at which the 
phase falls back through zero (and the reactance again passes through zero).  This is known as the 
parallel resonance frequency (or in some texts the anti-resonance).  Transducers typically output their 
maximum between these two frequencies (when the impedance is predominantly inductive). 

 
Figure 4.  The magnitude of the admittance, along with the susceptance and conductance of the 

transducer. 

Transducer designers often work with the inverse of impedance, the electrical admittance (Y): 

1Y G jB
Z

= = +  
(4) 

where G  is known as the conductance and B  as the susceptance.  These are related to the resistance 
and reactance as follows: 
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Figure 4 shows the magnitude of the admittance along with the conductance and susceptance for the 
transducer under consideration.  It will be noted that the series resonance coincides with an 
admittance maximum and the parallel resonance with an admittance minimum. 

 
Figure 5.  Change in normalised energy within a resonator through a resonance. 

The Q-factor, or quality factor, is used as a measure of the sharpness of a resonant system.  It is a 
measure of the ratio of the energy stored in a resonator to the energy dissipated each cycle.  In the 
example system of Figure 5 the frequency corresponding to maximum energy is 0f , and frequencies 

lf  and uf  are the lower and upper frequencies respectively at which the energy curve passes through 

half of its maximum energy.  The difference between these half power frequencies ( )u lf f−  is defined 

as the bandwidth of the system and the Q factor can be calculated from: 

0

u l

f
Q

f f
=

−
 (6) 

 
Figure 6.  Typical shapes of resonant responses for Q factors of 10 (lowest peak), 20 and 40.   

The mechanical Q factor of a transducer can similarly be calculated from the conductance plot around 
resonance.  Figure 6 shows typical resonant responses for Q factors of 10, 20 and 40, where 40 is the 
higher, sharper peak.  It can be seen that as the Q factor increases the peak becomes higher but the 
bandwidth reduces.  Alternatively the Q factor can be estimated by plotting the admittance against the 
conductance and extracting the values as shown in Figure 7. 
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Figure 7.  Susceptance vs conductance for circuit simulated in Figure 2 

Two port and three port transducer representations 
The equivalent circuit of Figure 1 takes the mechanical properties of the transducer and treats them as 
equivalent electrical components through which a current flows due to an applied voltage.  This can be 
represented in a slightly different way by separating the mechanical and electrical circuits using a two-
port representation.  In this approach the electrical elements of the system are represented by a 
current and voltage input which is transformed into force and velocity for a mechanical output.   

 
Figure 8.  Two port model for a transducer 

This approach is represented diagrammatically in Figure 8.  In the two port circuit diagram on the right 
the impedance eZ  represents the blocked electrical input impedance and the impedance mZ  is the 
mechanical impedance of the transducer.  The transformation of electrical parameters into mechanical 
parameters is via a transformer with turns ratio Φ .  The turns ratio of this transformer, unlike a real 
transformer, has dimensions. 

The two-port modelling approach requires assumptions to be made about the transducer backing (e.g. 
air backing, or symmetrical loading on each face) as it assumes an electrical input and a single 
mechanical output.  However a piezoelectric transducer has two faces and will typically be driving 
different mechanical impedances on each, so is more correctly considered to be a three port device 
with one electrical port and two mechanical ports.   

The Mason model shown in Figure 9 has two mechanical ports so that different impedances can be 
included on each face of the transducer.  Further, the lumped element model of the ceramic itself has 
been replaced with impedances which are the products of the mechanical impedance of the ceramic 
(Zc) and trigonometric functions of the wavenumber and thickness of the ceramic (kc and tc 
respectively).  This allows the model to represent thickness modes other than the fundamental. 
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Figure 9.  Mason three port model for a transducer 

The Mason model includes a physically unrealistic negative capacitance, and this is one reason why a 
number of alternative models have been proposed, including the KLM representation [5, 6]. 

 
Figure 10.  KLM model of the transducer modelled in Figure 2 showing the mode at about 3 MHz 

A KLM representation has been used to model the impedance plot of Figure 2 but extended to 4 MHz.  
A second thickness resonance can be seen at a frequency a little above 3 MHz.  A resonance is visible 
when the thickness equals a half wavelength and three half wavelengths, but no resonance is visible 
when the frequency is equal to a wavelength.  This is typical of the behaviour of piezoelectric 
transducers in thickness mode.  A solid plate excited by an external source will exhibit mechanical 
resonances at both odd and even multiples of a half wavelength.  However the piezoelectric excitation 
mechanism relies on bulk expansion and contraction of the plate.  This can couple into the mechanical 
resonance when opposite faces are moving out of phase, as in odd half wavelength modes.  In even 
half wavelength modes the opposite faces move in phase and the piezoelectrically induced expansion 
is not able to couple into this motion. 
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Piezoelectricity and Application to the Excitation of 
Acoustic Fields for Ultrasonic Particle Manipulation 
J. Dual, ETHZ Switzerland 
 

1. Introduction 
 
Exciting and detecting motion in solids by means of piezoelectric materials, in which an 
electric signal is converted into a mechanical motion and vice versa, has several 
advantages:  
 
-  With the availability of programmable signal generators, waves of arbitrary shape  and 

frequency content can be produced with a high degree of repeatability. Therefore, 
compared to excitation by mechanical impact, a large number of identical transient 
experiments can be performed in a short period of time, opening up the possibility of 
averaging and other signal processing techniques.  

 
- By appropriate tailoring of the transducer set-up, different modes of waves and 

vibrations can be excited and measured very selectively. 
 
- The low coupling of the electrical circuit with the mechanical motion at frequencies far 

below the resonance frequencies of the piezoelectric transducer allows very precise 
phase measurements and stabilization of resonance frequencies. 

 
However, a necessary condition to make use of the above - mentioned advantages, is the 
availability of materials with sufficiently high piezoelectric constants. This is the case in 
piezoelectric ceramics. While quartz has a piezoelectric charge constant of about 10-12 
C/N, the same constant for PXE 41, which is a modified lead zirconate titanate 
manufactured by Philips,  amounts to 10-10 C/N. The interaction between the 
piezoelectric transducer and the attached material will be described in the following. 
Basics regarding this field can be found e.g. in [ 1 ]. 
 
A typical transducer as used in ultrasonics is shown below. It is  brought in contact with 
the structure to be excited using a coupling agent or glue. Ultrasonic transducers work in 
a resonant mode, i.e. they have a precisely defined frequency, where they work best. 
Other transducers are used far below their resonance frequency.  
 
Piezoelectric materials have an intrinsic polarization. Depending on the direction of the 
applied field, which is controlled by the electrodes, extension/contraction occurs ( for E 
parallel to P) or shear (for E orthogonal to P) 
 
When used in a continuous mode, one has to be careful not to heat up the transducer too 
much. This is particularly true for ceramic transducers, as they loose polarization when 
heated above their Curie temperature. 



2 

 

2. Basic Equations 
Constitutive relations for piezoelectric materials relate the four quantities ( given together 
with their SI units ) 
 
 Ei electric field 1st order tensor ( N / C ) 
 
 Di electric displacement 1st order tensor ( C / m2 ) 
 
 γij strains 2nd order tensor (  -  ) 
  
 σij mechanical stress 2nd order tensor ( N / m2 ) 
 
by the material properties 
 
 sEijkl    mechanical compliance  
   for constant electric field  4th  order tensor ( m2 / N ) 
 
 dijk piezoelectric charge constant 3rd order tensor ( C / N) od. (m / V) 
  
 εij = εijσ permittivity at constant  
   mechanical stress 2nd order tensor ( C2 / m2N ) 
 
The electric displacement is defined as  
 

Di  =  ε0 Ei  +  Pi 
 
where P is the polarization vector, expressing the fact, that the electron cloud shifts with 
respect to the nucleus under the influence of an external electric field or an applied stress.  
Constitutive equations for a piezoelectric material can then be given in the form 
 

Damping material 

Piezoelectric Element Electrodes 

Protecting Layers 
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E k k

i i ik k

s d E

D d E
λ λμ μ λ

μ μ

γ = σ +

= σ + ε
        (1) 

 
where the components are referred to an orthogonal system of coordinates and Einstein_s 
summation convention for repeated indices is invoked. Latin and Greek indices take 
values from 1 .. 3 and 1 .. 6 , respectively, and the correspondence between Greek matrix 
indices and Latin tensor indices is given by 
 
 ij 11 22 33  23 , 32  13 , 31  12 , 21 
 λ 1 2 3 4  5  6 
 
For simplicity a uniaxial state will be assumed for both electrical and mechanical 
quantities in the following. All coupling effects with other components of stress, strain, 
electric displacement and electric field will be neglected and also indices will be dropped 
for simplicity of writing. For more complicated situations, a finite element analysis has to 
be made. 
 
Eqs. 1 can be rewritten with σ and D as independent quantities: 
 
 γ = sD σ   +  g D 

 E = - g σ +   
D
ε       (2) 

where  
 

 g = 
d
ε   piezoelectric voltage constant 

 sD = sE - 
d2

ε   mechanical compliance for constant electric displacement 

 
 
It should be noted, that piezoelectric ceramics have an axis of symmetry, which is parallel 
to the direction of poling. The material is transversely isotropic. It is customary to take 
the 3 - direction as the axis of symmetry.  
 
The permittivity tensor is diagonal with ε11  = ε22. The tensor containing the charge 
constants is zero except for the elements d33  , d31= d32  and d15 = d24. 
 
Typical values for the material constants in extension and shear for PXE 41 are 
summarized in the following table. 
 
In addition the equation of mechanical equilibrium (  for the case of harmonic loading ) 
 

σij,j  + ρ ω2 ξi  =  0      (3)
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Table :  Material Constants for PXE 41 Piezoelectric Ceramic Material 
_____________________________________________________________________ 
Property            Units  Extension in the Shear in Plane Ortho -  
     Poling Direction gonal to Poling Direction 
______________________________________________________________________ 
Mech. Compliance sE  (  10-12 m2/N ) sE33= 14.6  sE55= 32.0 

Mech. Compliance sD   (  10-12 m2/N ) sD33= 7.85 sD55= 20.8 

Charge Constant  d       ( 10-12 C/N )   d33= 268. d15 = d24 = 335. 

Permittivity ε              ( 10-8 C2 /m2N ) ε33=  1.06 ε22= ε11= 1.00 
Voltage Constant g     ( 10-3 m2/C )    g33 = 25.2 g15= g24 = 33.5 

Density  ρ   ( 103 kg /m3 )  ρ = 7.9 
______________________________________________________________________ 
 

                                         
 
The mechanical strain is defined as 
   γij  =  1/2 (  ξi,j  + ξj,i  ) 
   2 γij =  (  1 +   δij   )  γλ 
 
and Maxwell_s first equation for dielectric materials 
 

D i,i   =  0        (4)                                           
  
 
The right hand side is zero, because there are no free charges in a dielectric. In the 
uniaxial case one obtains for all cases considered  
 
 D = D0 D0 = constant      (5) 

3. Free - Free Vibration of a Piezoelectric Element 
 
First, the motion of a transducer with stress - free  boundaries will be considered.  
Using the definition of mechanical strain , Eq. 2, 3 and 5 one obtains the  differential 
equation  and boundary conditions 
 

 

2
11 D
2 2
D D

1 0

1 0

, k 0

k s
, (0) gD
, (L) gD

ξ + ξ =

= ρω
ξ =
ξ =

   (6) 

 
which yield 
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ξ = 0 D
D D

D D

gD cosk L 1(sink x cosk x)
k sink L

−
+    (7) 

From Eqs. 2 and 5 the corresponding σ and E are computed 
 

 σ = 
 gD0
sD

 ( cos kDx - 1 -  
cos kDL - 1

sin kDL    sin kDx )  

 

 E = - 
 g2D0

sD
 ( cos kDx -  

cos kDL - 1
sin kDL  sin kDx )  + D0 

 sE
sDε   

 
 
The electric potential is defined as 
 

 
L 2

D E
0

D D D D0

1 cos k L s2gV Edx D ( ) L
k s sin k L s

⎡ ⎤−
= − = −⎢ ⎥ε⎣ ⎦

∫  

 
For a given applied voltage V0 ,  the displacement is then 
 

 ξ(0) = V0 D D

D D D 2

s cosk L 1
1g 2(1 cosk L) (k Lsink L)
k

−

− −
 

    (8) 

 k2 =  
 gd
sE

       coupling coefficient 

 
For kDL << 1  Eqs. 7 to 8 can be simplified to yield for the quasistatic or " long wave-
length " case: 
 

 D0 = -  
 εV
L   [ 1 + O((kDL)2) ] 

 

 ξ = d V ( 
1
2  - 

x
L  ) [ 1 + O((kDL)2) ] 

    (9) 
 σ = 0 +  O((kDL)2)  
 

 E = - 
V
L  [ 1 + O((kDL)2) ] 
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Piezoelectric Transducers Used to Excite Mechanical Vibrations 
In the next step, a situation will be considered, in which a circular piezoelectric disk 
excites longitudinal motion in a circular rod. 
  
The transfer function between excitation voltage and the resulting motion will be 
determined for the long wavelength case, i.e. the wavelength both in the transducer and in 
the rod is assumed to be much larger than the diameter of the rod and transducer. Again a 
uniaxial state will be assumed for all elements involved. If the excitation voltage has the 
form V = Re ( V0 eiωτ ) , also all other quantities will have the same time -  dependence. 
To develop the equations the same procedure will be used as before. The only difference 
are the boundary conditions, which now are 
 
 ξ,1(0) = g D0 
     (10) 
 ξ,1(L) = sD σ0 + g D0 
 
σ0 is the stress between transducer and rod and can be expressed in terms of ξ0 = ξ ( L )  
and the impedance ZR  of the rod.  
 
            σ0 =  i ω ΖR ξ0       (11)  
 
Dependent on the type of motion, the impedance is  
 
a) for a wave propagation problem in an infinite rod 

ξ = ξ0 exp( i(ωt - kRxR))  kR  =  
 ω
cR

          cR  =  R

R

E

ρ
 

 
σ0 = - i ER kR ξ0       2.34 
 
ZR = - R RE ρ        (12) 

 
             
b) for a vibration problem in a rod of length RL  and stress - free boundary at R Rx L=   
  

( )0 cos tan sinR R R R R Rk x k L k xξ ξ= +  
 

0 0 tanR R REk k Lσ ξ=  
 

tanR R R R RZ i E k Lρ= −       (13) 
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One should note at this point that the impedance gets very small for the case of resonance, 
dependent on the amount of damping.  
For a weakly viscoelastic material in sinusoidal loading 
  

( )0 1RE E iϕ= +  , 1ϕ  
 

 ( )0 1 2Rk k iϕ= −  , 0
0

k
c

ω
=  , 0

0
E

c
ρ

=  

 
 In the case of resonance, where { }Im 0RZ = , and assuming 0 1Rk L ϕ  

 

0 0 2R R RZ E k Lρ ϕ= −       (14) 
 
From Eqs. 10, 11 and 2 and setting 
 

 0
0

L

V E dx= − ⋅∫  

 
one obtains 
 

0
0 2

D DV k s
D

g β
=  

 

sin (cos 1) 1 D
D D D

s
k L k L k L

dg
β α

⎛ ⎞
= + − − +⎜ ⎟

⎝ ⎠
 

 

cos 1 sin

sin cos

R
D D

R
D D

Z
k L i k L

Z
Z

k L i k L
Z

α
− −

=
+

      (15) 

 

D

Z
s

ρ
=  

 
and 
 

( )0 sin cosD
D D

V s
k x k x

g
ξ α

β
= +  

 

( )0 cos 1 sinD
D D

V k
k x k x

g
σ α

β
= − −  
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0 cos sin 1D D
D D

V k s
E k x k x

dg
α

β
⎧ ⎫⎛ ⎞

= − − − +⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
In the limit 1Dk L , the above equations reduce to 
 

 0
0

V
D

L

ε
ψ

= −  

 
0V d x

L
ξ γ

ψ
⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 

 
2

20
22

V d x x
L

L L
σ ρω γ

ψ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

      (16) 

 
20 1 D

D

V dg
E k Lx

L s
γ

ψ
⎛ ⎞

= − −⎜ ⎟
⎝ ⎠

 

 

where  2
D R

R
D

k L Z
i

Z
Z

k L i
Z

γ
+

=
+

 

 

and ( )2

1
2

D

D

k Ldg

s
ψ γ= −  

 
If the transducer is used to excite waves, RZ  and Z  have the same order of magnitude. 
Eq. 16 can be simplified and the transfer function ( )G ω  can be calculated. 
 
 1ψ =  
 

 
2

11
2 2D D

R R

i Z Z
k L k L

Z Z
γ

⎛ ⎞
= + − ⎜ ⎟

⎝ ⎠
 

 
 and 
 

 ( ) ( )
0

:
2

R R R R

L d L L
G i

V E E

ξ ωρ ωρω
ρ ρ

⎛ ⎞
= = +⎜ ⎟⎜ ⎟

⎝ ⎠
    (17) 
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This expression for the transfer function can also be obtained directly by considering a 
rigid mass (transducer), the center of which is displaced by an amount 02 2L d VΔ =  
with respect to the interface with the rod. One obtains 
 

( )
2 R

d
G

Z
i

L

ωω
ω

ρ

=
+

       (18) 

 
and with Eq. 12 

 

( )
2 C

d
G

i

ωω
ω ω

=
+

 

 

where R R
C

E

L

ρ
ω

ρ
=  

 
 
This result is equivalent to Eq. 17 for Cω ω  and represents a high-pass behaviour with 

Cω  as cut-off frequency. 
 
Magnitude and phase of the transferfunction for a typical configuration of transducer and 
rod are given in Fig. 1 for the exact solution according to Eqs. 15 and the rigid mass 
approximation of Eq. 18. The magnitude is normalized to yield 1 in the high frequency 
limit of equation 18. 
Up to a value of twice the cut-off frequency of 12.7 kHz Eq. 18 is an excellent 
approximation. For higher frequencies the effect of transducer resonance is noticeable as 
an increase of the displacement amplitude. 
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Figure 1:  Normalized magnitude of the transfer function for the excitation of waves according to Eqs. 

15(      ) and 18(-----) for the low frequency range.                                 
Transducer: PXE 41, 0.004 mL =               
Rod: Lucite with 9 -25.29 10  N mRE = ⋅ ⋅ , 3 -31.2 10  kg mRρ = ⋅ ⋅  
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A frequency range up to the first transducer resonance frequency is shown in Fig. 2. 
Additional phase jumps occur and the amplitude gets very large for the resonance 
frequency of the crystal. These effects adversely effect wave propagation experiments, 
where it is desirable to have excitation which is constant over a wide frequency range. 
Digital filtering can be used to overcome the problem. 
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Figure 2:  Normalized magnitude of the transfer function for the excitation of waves according to Eq. 15 

up to the first transducer resonance.        
            Transducer: PXE 41, 0.004 mL =                
Rod: Lucite with 9 -25.29 10  N mRE = ⋅ ⋅ , 3 -31.2 10  kg mRρ = ⋅ ⋅  

 
The situation is different, if the transducer is used to excite resonance vibrations. In Eq. 
14 it was shown that the impedance of the rod RZ  in the vicinity of resonance is 
proportional to the loss angleϕ  and can be quite small. If we impose the condition for 
resonance 
 

( )
0

Re 0
L

V

ξ⎧ ⎫
=⎨ ⎬

⎩ ⎭
 

 
assume that 1ϕ  and use the expression from Eq. 13 for the impedance of the rod, a 
modified characteristic equation for resonance is obtained 

( )0 0tan 0R Rk L k Lε + =       (19) 

with mass of the transducer

mass of the rod
ε =  

 
This corresponds to the characteristic equation for the resonance of a rod with an attached 
rigid mass. Using Eq. 16 and 19, it can be shown that 
 

 1 1
R R

L
i i

L

ρ εγ
ρ ϕ ϕ

= − = −  
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at resonance. For low dampingϕ ,γ  becomes very large and mechanical quantities in the 
transducer are completely dominated by a rigid mass type behaviour:ξ  is constant and 
the stress is linearly distributed. 
 
Eqs. 16 can only be simplified further for sufficiently high damping. Because Ddg s is of 
the order 1, one is allowed to set 
 

1ψ =    for   ( )2
Dk Lϕ ε  

 
For this case the mechanical motion does not influence the electrical circuit, i.e. the 
coupling is low. Again the rigid mass approximation of Eq. 18 yields the same result. On 
the other hand, if the damping is too small, very little energy pumped into the system will 
produce extremely large displacements, which in turn change the electric displacement. 
Then, no simplification of Eq. 16 is possible. 
The transfer function for a transducer which excites resonant vibrations is shown in Fig. 3. 
It is completely dominated by the resonances in the rod and the amount of damping 
present. 
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Figure 3:  Normalized magnitude of the transfer function according to Eq. 15 for excitation of a resonant 

rod at low frequencies and various values of the dampingϕ : 0.01ϕ = (      ) and 0.1ϕ = (-----)            
Transducer: PXE 41, 0.004 mL =                
Rod: Lucite with 9 -25.29 10  N mRE = ⋅ ⋅ , 3 -31.2 10  kg mRρ = ⋅ ⋅ , 0.2 mRL =  

 
If we extend the frequency range and take a smaller rod length we obtain Fig. 4. At the 
low frequencies, the peaks of the rod are visible, then they diminish in magnitude because 
of damping and increase again because of the transducer resonance. 
 
When characterizing devices for micromanipulation, very often impedance plots or 
admittance plots are determined for the transducer as shown in Fig. 5 and 6. It is seen, 
that the low frequency peaks almost disappear because of the low electromechanical 
coupling far away from the transducer resonance. 
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If we increase the damping ten times, all the system resonance peaks disappear and only 
the transducer resonance remains as seen in Fig. 7. 
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Figure 4:  Normalized magnitude of the transfer function according to Eq. 15 for excitation of a resonant 

rod at higher frequencies and various values of the damping ϕ : 0.01ϕ = (     ) and 0.1ϕ = (-----) 
Transducer: PXE 41, 0.004 mL =                
Rod: Lucite with 9 -25.29 10  N mRE = ⋅ ⋅ , 3 -31.2 10  kg mRρ = ⋅ ⋅ , 0.05 m=RL  
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Figure 5:  Impedance magnitude plot of the transducer according to Eq. 15 for excitation of a resonant rod 

at higher frequencies and damping 0.01ϕ = (     )  

Transducer: PXE 41, 0.004 mL =  

Rod: Lucite with 9 -25.29 10  N mRE = ⋅ ⋅ , 3 -31.2 10  kg mRρ = ⋅ ⋅ , 0.05 m=RL  
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Figure 6:  Admittance magnitude plot of the transducer according to Eq. 15 for excitation of a resonant rod 

at higher frequencies and damping 0.01ϕ = (     )  

Transducer: PXE 41, 0.004 mL =  

Rod: Lucite with 9 -25.29 10  N mRE = ⋅ ⋅ , 3 -31.2 10  kg mRρ = ⋅ ⋅ , 0.05 m=RL  
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Figure 7:  Admittance magnitude plot of the transducer according to Eq. 15 for excitation of a resonant rod 

at higher frequencies and damping 0.1=ϕ (     )  

Transducer: PXE 41, 0.004 mL =  

Rod: Lucite with 9 -25.29 10  N mRE = ⋅ ⋅ , 3 -31.2 10  kg mRρ = ⋅ ⋅ , 0.05 m=RL  

 
Literature: 
 
1. Ristic, V.M,”Principles of Acoustic Devices”, Wiley, New York, 1983 
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One dimensional models and planar resonator design. 
Martyn Hill. Tuesday 1145 and 1430.   

As will be clear from previous lectures, modes in microfluidic resonators generally comprise a complex 
three dimensional pattern of acoustic pressure and velocity (and hence radiation force potential) that 
can not be fully modelled by a simple one dimensional approach [1-3].  Nonetheless a one dimensional 
model represents an important starting point for many designs, and a helpful way of interpreting 
resonator behaviour [4-9]. 

Transfer impedance one dimensional modelling 
There are many different ways of generating the acoustic excitation required to carry out ultrasonic 
particle manipulation.  Sound can be coupled into cavities using surface acoustic waves [10, 11], 
interface waves [12], plate waves [13, 14], wedges [15, 16], orthogonal excitation [17, 18], cylindrical 
modes of a tube [19] or transducer pairs [20-22]. 

However the planar excitation of a rectangular cavity with a single transducer is probably the simplest 
approach and is certainly the approach most amenable to simple modelling.  While manipulation can 
be brought about by progressive waves and by interference fields at frequencies away from resonance, 
the most efficient way of ordering particles is through resonant operation and this is the approach will 
be considered here. 

 

Figure 1.  Typical structure of a planar layered resonator. 

A planar resonator will typically consist of a transducer, a fluid layer within which the manipulation 
takes place, and a reflector layer (Figure 1).  Often a carrier layer is included (sometimes called a 
coupling layer or a matching layer) to provide structural rigidity and/or to isolate the transducer from 
the fluid 

A number of 1D models have been developed.  One of the first to be used in the design of resonators 
for ultrasonic manipulation was that of Nowotny, Benes et al. [23, 24] which was used in the work of 
Gröschl [5, 25].  Other workers (including Cegla and Hawkes) have applied models based on guided 
wave formulations [26]. 

The model used in Southampton [7, 27] is less general but more straightforward than these. The 
concepts underlying the approach and the outcomes (within limits of applicability) are the same so it is 
this approach that is explained here 

 

Reflector 

Fluid 

Carrier 

Transducer 

Termination 
impedance 

Backing
impedance



 

Figure 2.  Two and three port models for a transducer 

The aim of the modelling process is to predict the acoustic velocity and pressure amplitudes and 
patterns associated with particular modes.  The generation of acoustic forces begins in the transducer, 
but in either the two port or three port models shown in Figure 2, the force and velocity exerted by the 
transducer face needs to be known, and this in turn can not be calculated without knowing what 
impedance the transducer is driving into.  This has to be calculated from the impedances of the layers 
that make up the device. 

 

 

Figure 3 Incident, transmitted and reflected waves at a surface. 

Consider a simple system (Figure 3) in which a transducer drives a layer at x L= −  (see [28] chapter 

10).  This layer has a characteristic acoustic impedance 1 1cρ  and is terminated by a boundary at 0x =
with a second layer with a different acoustic impedance.   

The pressure in layer in Layer 1 is the sum of the positive and negative going waves 

( )j t kx j t kxp Ae Beω ω− += +  (1) 

Aej(ωt-kx)

pt 

Layer 1 Layer 2 Transducer 

ρ1c1 

z1 

x=0 x=-L 

Bej(ωt+kx)

Zm 

Vin Ze 

F1 

uout Iin 1:Φ 

Vin 

Fback 

 jZctan(kct/2)  jZctan(kct/2) 

 Zc/jsin(kct) 

 -C0 

  C0 

F1 

 1:Φ 



Using an analysis identical to that used to look at transmission through a boundary (see equation 6 in 
the notes on Fundamentals of Acoustics II), the acoustic impedance at 0x =  (i.e. the summed 

pressures divided by the summed velocities of the two waves) is 

0 1 1x
A Bz c
A B

ρ=

+
=

−
 

(2) 

Similarly at the transducer boundary x L= −  

1 1

1 11 1 1

jk L jk L

jk L jk L

Ae Bez c
Ae Be

ρ
−

−

+
=

−
 

(3) 

Combining these to eliminate A & B gives 

0 1 1 1
1 1 1

1 1 0 1

tan
tan

x

x

z j c k Lz c
c jz k L

ρρ
ρ

=

=

+
=

+
 

(4) 

where 1k is the wavenumber in layer 1.  Hence the acoustic impedance looking into the layer is a 

function of the characteristic acoustic impedance of the layer, the thickness of the layer and the 

impedance that terminates the layer ( 0xz =  in this example).  Looking back to the layered structure of 

Figure 1, the only impedances that are known a-priori are the backing impedance on the left, which is 
incorporated into the transducer model, and the termination impedance on the right.  Hence the 
transmission line approach uses equation (4) and the knowledge of the termination impedance to 
calculate the impedance at the boundary between the fluid and the reflector, then use that to calculate 
the impedance between the fluid and the carrier, and finally use that to model the impedance at the 
face of the transducer.  The acoustic impedance at the transducer face (relating pressure and velocity) 
can then be multiplied by the surface area to generate a mechanical impedance (relating force and 
velocity) which can be included directly in the two or three port transducer model of Figure 2. 

Modelling of acoustic parameters within the layers 
The approach outlined above provides an estimate of the electrical impedance characteristics of the 
resonator.  In order to model the performance of the resonator in more detail, it is also necessary to 
model the acoustic behaviour within the layers, and in particular within the fluid layer. 

If we base our analysis on an air-backed transducer and incorporate that into the two port model of 

Figure 2, the force acting on the layer immediately adjacent to the transducer ( 1F ) is simply the 

transformed voltage split through a potential divider:  

1
1

1
in

m

ZF V
Z Z

= Φ
+

 
(5) 

where 1Z  is the mechanical impedance looking into the first layer.  This is derived from the area and 

the acoustic impedance looking into layer 1.  The acoustic field in layer 1 generates a force on the 
boundary with layer 2 and so on, such that successive force inputs at the boundary of layer n+1 based 
on properties and inputs to layer n are: 

1
1

1 cos sin
n n

n
n n n n n n

F Z
F

Z k t jr S k t
+

+
+

=
+

 
(6) 

where r  denotes characteristic acoustic impedance, t  is layer thickness, k  wavenumber and S  is the 

cross sectional area. 



For layer n  of thickness nt , we let 0x =  at the start of the layer, and the spatial variation of the 

acoustic pressure, ( )np x , through the layer may be expressed as: 

1

1

cos ( ) sin ( )
( )

cos sin
n n n n n n n

n
n n n n n n

F Z k t x jr S k t x
p x

S Z k t jr S k t
+

+

− + −
= ⋅

+
 

(7) 

The corresponding relationship for acoustic velocity variation through the layer is: 

1

1

cos ( ) sin ( )
( )

cos sin
n n n n n n n

n
n n n n n n n

F r S k t x jZ k t x
u x

r S Z k t jr S k t
+

+

− + −
= ⋅

+
 

(8) 

Acoustic Energy Measures 
The pressure and velocity measurements in each layer can then be used to calculate the instantaneous 

energy density, nε , at a point within layer n: 

2
2

2

( )1( ) ( )
2

n
n n

f

p x
x u x

r
ε ρ

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
 

(9) 

The time average of the instantaneous energy density ( )n t
xε  can be calculated using the real parts of 

pressure and velocity above.  This can then be integrated numerically to calculate the total time 
averaged, energy stored in the layer: 

0
( )nt

n n t
E S x dxε= ∫  (10) 

 

  



Designing planar resonators 
The remainder of the two lectures that comprise One dimensional models and planar resonator design 
are split into three sections which are mentioned here in outline only but will be expanded upon 
during the presentations 

Applications of one dimensional models 
This will take selected examples from an existing paper [29] (a preprint of which is included in the 
course notes) as an appendix to this document.   

It will also discuss approaches (illustrated in Figure 4) that allow the use of a 1D model as a way of 
estimating component parameters 

 

Figure 4 Modelled (black) and measured (red) plots for estimating component acoustic parameters. 

 

Two and three dimensional modelling 
While one dimensional models can be very useful for the preliminary design and understanding of 
devices, investigators have been making increasing use of two and three dimensional models [1-3, 14, 
30, 31].  Several examples of pressure plots and radiation force potential contours for designing 
devices and understanding their behaviour are included (Figure 5) 

 

 

Figure 5 COMSOL pressure amplitude simulations for planar channel with different edge boundary 
conditions. 

Examples of recent applications of planar resonators 
The presentation ends with a discussion of:  

• multi-modal resonators 
• mode switching to overcome some of the constraints of fixed resonant patterns [32]  
• thin “reflector” designs [33] 
• dual force design incorporating magnetic and acoustic forces 
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Abstract: Several approaches have been described for the manipulation of particles within an ultrasonic field.  Of 
those based on standing waves, devices in which the critical dimension of the resonant chamber is less than a 
wavelength are particularly well suited to microfluidic, or “lab on a chip” applications. These might include pre-
processing or fractionation of samples prior to analysis, formation of monolayers for cell interaction studies, or the 
enhancement of biosensor detection capability. 

The small size of microfluidic resonators typically places tight tolerances on the positioning of the acoustic 
node, and such systems are required to have high transduction efficiencies, for reasons of power availability and 
temperature stability.  Further, the expense of many microfabrication methods precludes an iterative experimental 
approach to their development. Hence, the ability to design sub-wavelength resonators that are efficient, robust and 
have the appropriate acoustic energy distribution is extremely important.   

This paper discusses one-dimensional modelling used in the design of ultrasonic resonators for particle 
manipulation and gives example of their uses to predict and explain resonator behaviour. Particular difficulties in 
designing quarter wave systems are highlighted, and modelling is used to explain observed trends and predict 
performance of such resonators, including their performance with different coupling layer materials. 

Keywords: acoustic radiation force, layered resonators, robust design, particle manipulation 
 

Introduction 
Ultrasonic standing waves (USWs) can be used to trap and manipulate particles, and are particularly well suited 

for the manipulation of micron-scale biological particles in devices of a microfluidic scale [1].  Several different 
approaches have been employed for the manipulation of particles using ultrasonic fields.  For example, focussed 
ultrasound [2,3] or near-field effects [4] can be used to trap particles prior to analysis, particles can be moved by 
using two or more opposing transducers to modulate the standing wave field [5,6], or particles can be held and 
moved within USWs excited by plate waves coupled into the containing fluid [7,8].  However, the use of a simple 
planar layered resonator with a single transducer [9-11] offers the simplest approach to establishing a USW suitable 
for particle movement.   

Planar USW systems may employ resonators that are larger than a wavelength and contain multiple pressure 
nodal planes [12,13], but for microfluidic scale devices, a resonant cavity with an axial dimension that is lower than 
the operating wavelength may be employed [14-16].  Such sub-wavelength resonators typically rely for their 
operation on precise positioning of the pressure node, to which particles will migrate.  In these systems the ability 
to design a resonator that will operate with a good efficiency and have the required acoustic mode shapes is critical.  

A variety of approaches to modelling resonators have been described (see for example [9,17,18]).  This paper 
uses one dimensional models implementing impedance transfer relationships [11,19,20]. 

Layered resonators for particle manipulation 

 
Fig. 1. Typical structure of a planar layered resonator 

The structure of a typical planar resonator is shown in Fig. 1 and consists of a transducer which is, in general, 
bonded to a coupling layer (also known as a carrier layer or matching layer) that serves to isolate the adjacent fluid 
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layer from the transducer.  A standing wave is established in the fluid layer by a solid reflector layer.  

Particles within the standing wave experience a force, which in most cases of interest acts towards a pressure 
node of the standing wave.  The force on a particle of radius a at position x within the standing wave can be 
expressed as a function of the spatial gradients of the time averaged kinetic (Ekin(x)) and potential (Epot(x)) energies 
[21] 

 (1)

where β and ρ are the compressibility and the mass density of the fluid and the particle, indicated by subscripts f 
and p respectively.  The wave number, k is equal to 2π/λ where λ is the wavelength of the standing wave.  

The problem of modelling particle behaviour in the standing wave then becomes one of describing the variation 
of acoustic parameters through the acoustic field such that the energy parameters Ekin(x) and Epot(x) can be 
calculated.  The rest of the paper discusses the characterisation of the field itself in order to provide the behaviour 
required for the correct operation of the device (chiefly nodal position and energy density). 

Simple two-layer model 
Background theory 

An approach to the characterisation of the underlying properties of resonators is to begin by looking at the 
modal solutions of a two layer system consisting of a fluid layer with a rigid boundary coupled with a reflector 
layer with a pressure-release boundary [20]. Such a model is not, in itself, sufficient to understand the behaviour of 
a resonator such as that shown in Fig. 1. However it can act as a starting point, suggesting layer properties able to 
provide the required nodal behaviour. Additional layers can then be added and their parameters adjusted in a fuller 
model to maintain, or fine-tune resonator response. The two-layer approach simplifies to solving  

 
(2)

where tr and tf are the thicknesses of the reflector and fluid layers respectively, k is the wave number and rf and r0 
are the acoustic impedances of the fluid and reflector layers respectively. A given ratio of the thicknesses of the two 
layers (i.e a fixed design) is represented by a straight line passing through 0,0 on the graph in Fig. 2, which shows 
the first 4 solutions of equation (2), plotted as the ratio of thickness to wavelength of the fluid layer to the ratio of 
thickness to wavelength of the reflector layer. 

 
Fig. 2. The first four solutions of equation (2), based on [20].Parameters tr and tf are the thicknesses of the reflector 

and fluid layers respectively and λr and λf are ultrasonic wavelengths in those layers 

A fluid layer having two perfectly rigid boundaries would have modal solutions corresponding to horizontal lines at 
tf/λf =0.5, 1, etc. where λf is the ultrasonic wavelength in the fluid layer. Similarly, a reflector bounded by two 
pressure release surfaces would show half wave resonances as vertical lines corresponding to tr/λr=0.5, 1, etc.  
There is, however, no modal solution at (0.5, 0.5) on the graph, but region C shows how the modes of the coupled 
system split when adjacent layers would have coincident resonances if isolated.  The parameter in Fig. 2 that 
indicates the position of the pressure node within the fluid layer is tf/λf.  In order to place a node centrally, in this 
two layer model, a reflector thickness of a quarter wavelength is required, i.e. tr/λr=0.25, as shown in area A of Fig. 
2.  It can also be seen from area A that the solid line representing the solution to equation (2) is relatively flat in that 
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region, indicating that the position of the node should be stable with regards to the reflector layer thickness.  Even 
with the combination of a half wavelength fluid layer and a quarter wavelength reflector layer, the influences of the 
coupling layer and transducer need to be considered, and Fig. 3a shows how the frequency of maximum energy 
density in the fluid layer, and hence the position of the node within the fluid layer, varies as a function of coupling 
layer thickness.  With the parameters used in this system (taken from [11]) the variation in frequency is relatively 
small, and selection of a quarter wavelength coupling gives the most stable frequency, but a relatively low value of 
peak energy.  The material used for the coupling layer is investigated in more detail later. 

 
Fig. 3. Variation of the frequency and energy density of the most energetic resonance as coupling thickness layer 
varies. (a) Parameters based on simulations in [11], and normalised against the nominal resonance frequency. (b) 

With lower Q factors in coupling and fluid layers. 

 

The highest values of energy density occur either side of the points at which the coupling layer equals half 
wavelength multiples, but with a significant dip for the half wavelength coupling layer itself. This dip, however, 
becomes less pronounced at lower Q factors.  If the Q factors are reduced from 200 and 500 for the coupling and 
fluid layers respectively (Fig 3a) to 50 for both (Fig 3b), the frequency variation of the peak remains similar, but the 
peak energy density characteristics change significantly.  These Q factors seem low, but their values represent 
observed losses throughout the resonant device and will in general be much lower than material Q factors [9].  A 
similar observation is made later for quarter-wavelength fluid layer systems where coupling layer materials have 
been investigated. 

 
Fig. 4. Schematic representation of a quarter wavelength resonator forcing particles up against a solid surface with 

an immunosensor coating. 

Modelling of quarter wavelength devices 
The need for robust design of resonators becomes particularly important when dealing with quarter wavelength 

devices.  A quarter wavelength resonance is observed when the fluid layer is at a quarter wavelength and the 
reflector layer is a half wavelength thick, in the region marked B in Fig. 2.  Such a system may be used to force 
particles against, or close to, a solid surface as shown in Fig. 4 which is designed to enhance particle capture on an 
immunosensor surface.   

A simple simulation suggests that for fixed values of coupling layer and reflector thickness, simply varying the 
fluid layer thickness should enable the pressure node to be positioned at, or close to, the reflector layer.  This can be 
seen from the simulations of a silicon/Pyrex resonator shown in Fig. 5, which use the parameters shown in Table 1. 
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Fig. 5. Simulated values of peak energy density, peak frequency and nodal position for silicon microfabricated 

quarter wavelength resonator 

 

Table 1.  Quarter wave simulation parameters 
 Coupling Fluid Reflector 
Thickness (m) 5.25e-4 Varying 1.60e-3 
Density (kg m-3) 2.34e+3 1.00e+3 2.20e+3 
Speed of Sound (m s-1) 8.43e+3 1.50e+3 5.43e+3 

 

However the gradient of the solution line in region B of Fig. 2 suggests that the nodal position is likely to be 
extremely sensitive to reflector layer thickness 

 
Fig. 6. Acoustic simulation of the pressure profile across the chamber used by Martin et al. [22] for different 

reflector thicknesses (a), and simulations of particle capture (line) compared with experimental data (b). 
Reproduced from [22] with permission from Elsevier. 
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Martin et al. [22] investigated the acoustics of such a system with the aim of forcing spores onto an antibody 
coated surface using a 3 MHz USW.  The device was tested in batch and flow-through modes and it was found that 
the efficacy of capture was critically dependent on the reflector layer thickness.  When a 980 µm thick reflector was 
used, there was almost no capture of the BG spores.  Capture increased with a 1000 µm reflector, peaked with a 
thickness of about 1100 µm and fell away significantly with a reflector thickness of 1300 µm.  This was explained 
by 1D simulations of the acoustic pressure for different reflector thicknesses, as shown in Fig. 6(a).  With a 
reflector thickness of 980 µm, the pressure node is in the fluid, away from the reflector boundary, so particles are 
forced away from the antigen surface.  With a 1000 µm reflector, the node is just in the reflector, so particles will 
be forced to the surface.  A 1200 µm reflector places the node well into the reflector, but also brings a pressure 
antinode into the fluid, causing many particles to be forced to the opposite boundary.  Hence there is an optimum 
positioning of the node that is dependent on the reflector thickness and a significant decrease in capture efficiency 
on each side of this thickness.  When flow and particle tracking were added to the acoustic model [23] it was 
possible to predict the nature of the dependence of particle capture on reflector depth, as shown in Fig. 6(b).   

Selecting operating points from 2D plots 
There are other applications in which it is required to place a pressure node close to, but not on, a boundary 

with a solid layer.  Such a “near quarter-wave” resonator has been designed for concentrating particles prior to 
analysis [24] and is shown schematically in Fig. 7.   

 
Fig. 7. Schematic representation of a “near quarter-wave” concentrator. 

In this case the aim was to move particles to within 20 µm of the reflector layer in a 180 µm cavity.  In order to 
achieve this, multiple simulations were completed to predict the sensitivity of the energy density and nodal position 
to relevant geometric parameters.  An example is shown in Fig. 8 in which these parameters are plotted against 
reflector and coupling layer thickness.  For each geometric design, the acoustic energy within the fluid layer is 
determined over a small range of frequencies in order to isolate the fluid quarter wavelength mode.  Acoustic 
energy density and corresponding position of the pressure minimum are recorded for the frequency where energy 
density is seen to peak. 

The parameters used in the simulations are shown in the Table 2, with the values of Q-factor inferred by 
matching modelled and experimentally derived electrical input impedance spectra for:  

1. the isolated transducer,  

2. the transducer, glue and coupling layers,  

3. the full system. 

Table 2.  Concentrator simulation parameters 

Layer Thickness (μm) Density (kg/m3) Sonic velocity (m/s) Q-factor

Glue 10 1080 2640 2 
Macor coupling 800-1800 2540 5510 100 
Fluid 180 1000 1480 50 
Reflector 1200-1550 2470 5600 100 
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Fig. 8. Acoustic energy density in the fluid layer (upper) and fractional position of pressure minimum (lower) with 

contours representing the coupled transducer and coupling layer thickness in wavelengths. 

In Fig. 8 the white diagonal bar across plot (a) suggests that both reflector and coupling layer thicknesses are 
important parameters to consider when designing to maximise acoustic energy density and therefore radiation force.  
Similarly, plot (b) indicates how the design influences the position of the pressure minimum within the fluid layer 
and how the thicknesses chosen can result in the pressure node moving from within the fluid layer a small distance 
from the reflector layer (grey) and into the reflector such that particles are pushed up to the reflector surface 
(white).     The irregularity of the contour representing a single wavelength is due to a coincidence of the coupled 
transducer/matching layer resonance and the half wavelength resonance of the reflector.  Pressure amplitude plots 
for the two points (‘o’ tr = 1350 µm and tc = 1200 µm, and ‘+’ tr = 1350  µm and tc = 1300 µm) marked in Fig. 8 are 
shown in Fig. 9.   

 
Fig. 9. Acoustic pressure profile for the two potential design points marked in Fig. 8 – ‘o’ (solid) and ‘+’ 

(dotted). 

It can be seen that point ‘+’ corresponds to a higher energy in the coupling layer, although the pressure profile 
in the fluid layer is similar.  However from Fig. 8 point ‘o’ is far more robust in terms of nodal position, despite 
having a lower energy.   

 

Just as the damping in the system alters the characteristics between Fig. 3a and Fig. 3b, this system is also 
sensitive to changes in Q factors.  Fig. 10 is a repeat of the simulation shown in Fig. 8 but with a significantly 
higher reflector Q factor.  The nodal position (lower figure in each case) as a function of layer thicknesses remains 
robust to layer thicknesses and is similar in both figures.  Not surprisingly the magnitude of the energy density in 
the fluid layer (upper figure) changes significantly between the simulations.  Further, the form of the energy density 
surface has changed.  In the more highly damped system of Fig. 8, the maximum energy density lies close to the 
irregular single wavelength contour, while for the higher Q Fig. 10, the maximum energy lies either side of this 
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contour in a manner similar to the coupled resonances described in [11].  Hence the position of the node in these 
systems appears to be relatively robust to the damping factors. 

 
Fig. 10. Acoustic energy density in the fluid layer (upper) and fractional position of pressure minimum (lower) with 
contours representing the coupled transducer and coupling layer thickness in wavelengths but with higher Q factors 

in the layers than used in Fig. 8 

Fig. 11 shows a prototype quarter wave concentrator in which tr = 1440 µm and tc = 1040 µm. This device 
provided a factor of 4 concentration with one micron diameter particles and the nodal position was as predicted by 
modelling using high Q factors, although the damping and hence energy density characteristics proved to be closer 
to those shown in Fig. 8 on experimental evaluation. 

 
Fig. 11. Prototype quarter-wavelength concentrator 

 

Effect of Varying the Coupling Layer Material 
As discussed previously, the coupling layer material can have an effect on the nodal positions, and the amount 

of energy stored within the fluid layer. Practical considerations are also important in designing particle 
manipulators, such as bio-compatibility, ease of manufacture, and cost, so it is useful to know what range of 
materials can be used and how they affect the performance. The device shown in Fig. 11 has a coupling layer 
manufactured from Macor, a machinable ceramic, similar to glass. Devices with coupling layers made from other 
materials were also constructed. The materials investigated were aluminium and brass. It is known that the coupling 
layer material influences the acoustic energy density and the maximum radiation force experienced by a particle. 
This is highly relevant to quarter-wavelength systems as the success of a resonator typically relies on maximising 
the acoustic energy density. In the case of  a quarter wave device, the quarter wave mode is a lot less energetic than 
a typical half wave device and maximizing the efficiency to avoid heating effects in the other layers requires careful 
design. Quarter wave devices are much less efficient than half wave devices because of the reliance on a reflector 
layer resonance where much of the acoustic energy is dissipated.  

Initial simulations were used to design near quarter-wavelength resonators operating around 2MHz for each 
coupling layer material.  The acoustic pressure profiles within these devices are similar to that shown in Fig.9 
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where a half-wavelength resonance is seen in the reflector layer above the fluid chamber.  This resonance imposes a 
node at the fluid/reflector boundary and for certain fluid depths will result in a quarter-wavelength “resonance” in 
the fluid layer.  This mode forces suspended particles up to this surface. 

For the experimental devices a transducer with a resonance close to the operating frequency of the assembled 
chamber was used (Ferroperm PZ26, 1mm thick).  To give comparable acoustic pressure profiles in the fluid layer, 
the model was used to select coupling layer and fluid layer thickness dimensions.  In each case the fluid layer 
thickness was chosen to be 0.18mm and coupling layer thicknesses of 1.0, 1.4, and 1.2 were selected for brass, 
aluminium and Macor, respectively.  Table 3 contains the measured thickness dimensions and acoustic properties 
used in the initial modelling. 

Although the modelling suggests good results for the pressure profile, the model requires calibrating with 
experimental data to provide absolute values for the acoustic parameters. This is done by taking acoustic energy 
density measurements for the different chambers and then adjusting the model parameters such as material Q 
factors, to get the best match. Acoustic energy density measurements are taken between 1.96 and 2.1 MHz at 
10 kHz intervals.  These measurements are made by levitating a polystyrene particle and recording the threshold 
voltage where the particles begin to sediment, similar to the method described by Martin et al. [22].  For the 
particles, fluid (water) and frequency used, this threshold voltage corresponds to a pressure amplitude of 33kPa.  
During experiments, the position of the node is difficult to measure accurately but is reasonably consistent with 
predictions of the pressure profile such as that shown in Fig. 9. As the acoustic pressure amplitude is proportional to 
the transducer voltage, the pressure amplitude P0 resulting from a 10 Vpkpk voltage is recorded and converted to an 
energy density measurement using (3): 

,  (3) 

where  is the acoustic energy density and βw is the bulk modulus of water, with the results presented in Fig. 12.   

Table 3.  Dimensions of experimental samples.  Properties of materials taken from [25]. 
 

Coupling layer 
material 

Coupling layer 
thickness (mm) 

Fluid layer thickness 
(mm) Density 

(kg/m3) 

Sonic 
velocity 

(m/s) 

Acoustic 
impedance 
(MRayl) Design Measured Design Measured 

Brass 1.00 1.08 0.18 0.17 8640 4700 40.6 
Aluminium 1.40 1.42 0.18 0.175 2700 6420 17.3 
Macor 1.20 1.17 0.18 0.19 2540 5510 14.0 

 

 
Fig. 12. Comparison between measured (pointes with 
error bars) and modelled (solid lines) acoustic energy 

density. 
 

Fig. 13. Predicted peak acoustic energy density in the fluid 
layer for a range of coupling layer thicknesses for brass 

(solid), aluminium (dashed) and Macor (dotted). Showing (a) 
acoustic energy density, (b) the quarter wavelength excitation 

frequency and (c) the fractional position of the pressure 
minimum within the fluid chamber.. 

 

wP βε 2
04

1=

ε



 9

The plots of fig. 12 show that the acoustic energy density peaks at frequencies where resonant modes are 
encountered.  Predicted energy density is also shown, where the input parameters to the model have been modified 
to improve the match with both impedance and energy density measurements.  Notably the Q factors have been 
adjusted to 300, 100 and 100 for brass, aluminium and Macor, respectively.  Similarly, the Q factors in the fluid and 
reflector are low at ~30 and ~100, respectively. In the case of brass, two peaks can be seen although the model 
suggests that the peak around 1.98MHz is a combined transducer and coupling layer resonance.  This mode appears 
to be particularly energetic and may be reinforced, for example, by structural modes. 

To compare each material more directly, the model was used to simulate the effect of varying coupling layer 
thickness whilst applying identical reflector and fluid layer properties.  Fig. 13 shows the predicted peak energy 
density for a range of coupling layer thicknesses as a fraction of wavelength (tm/λ) and where the transducer voltage 
is a constant 10 Vpkpk.  Note that Fig. 13 is generated by locating the frequency at which the quarter-wavelength 
mode (reflector resonance) occurs and omits any other resonant modes close to this frequency.  It therefore does not 
include the high energy resonance seen at 1.98MHz in the experimental results for the brass coupling material. 

In general, the energy density is comparable for the materials considered, although the material does have a 
limited impact in the maximum energy density achievable.  Peaks suggest that for all the materials tested a coupling 
layer thickness of just under n.tm/2λ (n = 1, 2 only shown) results in a higher acoustic energy.  The trade-off in this 
case is that the acoustic node moves away from the surface and further into the fluid layer at these dimensions as 
shown in Fig. 13c.  As the transducer is operating close to a half-wavelength, the peaks also coincide with a 
wavelength resonance in the transducer and coupling layer combined where if this structure were isolated from the 
fluid and reflector would have a pressure node located on the coupling layer surface.  The close proximity of this 
coupled resonance to the quarter-wavelength mode may therefore be responsible for the change in energy density 
and movement of the node towards the coupling layer surface.  Also, for an increase in n the energy density 
decreases, probably due to greater losses within a progressively thicker coupling layer.  

The observations made in Fig. 13 are similar to those in Fig. 3b for a half-wavelength system.  This suggests 
that the design of the coupling layer and transducer can be decoupled from the fluid and reflector layer to some 
extent.  For example, the position of the nodal plane(s) within a fluid chamber depends on the controlled design of 
the fluid and reflector design and aided by Fig. 2.  Although the coupling layer and transducer will influence the 
node position and energy density, they have a small effect relative to fluid/reflector design and considering the wide 
range of coupling layer/transducer designs which could feasibly drive the system. 

Conclusions  
One-dimensional acoustic modelling has helped identify specific parameters which influence the robust design 

of resonators for particle manipulation.  The nodal position and energy density are typically important factors in 
resonator performance, and the choice of layer dimensions and material properties influence these factors 
significantly.  For example, the careful selection of Q factors for the various materials and layers used to construct 
these resonators may be used to help relax dimensional tolerances.  It appears that the influence of the coupling 
layer on the performance of both half and quarter-wavelength resonances is related, with the proximity of the 
coupling layer/transducer mode impacting upon the characteristics of fluid/reflector modes. 

It has also been shown that the behaviour of quarter-wavelength modes can be more fully understood based on 
a comparison of modelled and experimental data.  Using experimental data to refine the simulation input 
parameters it is possible to predict the acoustic energy density to well within the correct order of magnitude.  This is 
important, for example, for bio-sensing applications where the location of the pressure node and strength of the 
field influences significantly the feasibility of such devices.   The choice of material used to couple between the 
transducer and fluid manipulation chamber determines to a limited extent the maximum energy density achievable, 
although coupling layer thickness appears to have a greater impact. Therefore a range of materials can be used for 
the construction of the coupling layer. 

While 1D models are able to provide very useful, and in the case of nodal position accurate, predictions of 
device behaviour, the influences of lateral field variations are also of significance [26].  These variations are the 
main limitation on the performance of the concentrator described here [24] 
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1. Practical principles of optical microscopy

2. Microscopy for lab-on-a-chip devices

3. Contrast, fluorescence and confocal techniques
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4. Particle image velocimetry
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What is the size of biological objects?
Molecule 0.5 – 50 nm
Example:Biotin 1 nm

Antibody 15 nm sizes covered

sizes fitting
well into

lab-on-a-chip
systems:

Virus 10 – 100 nm
Cluster of molecules up to 5 µm
Bacteria (prokaryotic) 0.5 – 5 µm (length)
Cell (eukaryotic) 5 – 50 µm
Example:Red blood cell 2×7 µm

White blood cell 15 µm

by optical 
microscopy:

M. Wiklund
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Basic modes/terms of microscopy

1. Wide-field microscopy
Entire sample (or field of view) is uniformly illuminated

2. Confocal microscopy2. Confocal microscopy
Small focused spot is illunimating one sample point, and then 
scanned over the sample (or field of view)

3. Bright-field microscopy
The sample is illuminated with white light

4. Fluorescence microscopy
The sample is illuminated with color-specific light and then 
observed in another color band (i.e., the excitation light is filtered 
out from the image)

5. Trans-illumination microscopy

M. Wiklund

-4-

5. Trans illumination microscopy
Illuminate from one side, look from the other side, often combined 
with condenser optics (e.g., for contrast techniques)

6. Epi-illumination microscopy
Illuminate and look from the same side, used for surface imaging 
and fluorescence imaging
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Wide-field microscopy
Two lenses (lens systems):
The objective and the eyepiece (or ocular)

Image from: K. Carlsson,
“Light microscopy”, KTH

M. Wiklund

-5-

Objective

Eyepiece

objectiveM H h b a 

250( ) ( )eyepiece eM mm f mm

Magnification:

tot objective eyepieceM M M 

Wide-field microscopy
Two lenses (lens systems):
The objective and the eyepiece (or ocular)

Image from: K. Carlsson,
“Light microscopy”, KTH

M. Wiklund

-6-

Objective

. . sinN A n  

Numerical aperture:Eyepiece
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Wide-field microscopy
Köhler illumination:
The standard alignment of the condenser illumination light
Principle: Separation of the illumination and imaging ray path

(When one is focused, the other one is defocued)

M. Wiklund

-7-

Image from: K. Carlsson,
“Light microscopy”, KTH

Motive:
-Uniform illumination of the sample
-High light throughput
-Adjustable light intensity and illuminated area

Wide-field microscopy
Epi-illumination:
The objective is also the condenser
(illuminate and look from the same side)

Very useful in fluorescence microscopy

M. Wiklund

-8-

Image from: K. Carlsson,
“Light microscopy”, KTH
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Wide-field microscopy
Epi-fluorescence microscopy:
The beam splitter is a filter cube consisting of an excitation filter, a dichroic
beam splitter and a barrier filter

Simpler condenser optics (it does not matter from where we illuminate)p p ( )

M. Wiklund

-9-

Image from: K. Carlsson,
“Light microscopy”, KTH

Basic microscopy properties
Numerical aperture (more):

. . sinN A n  
Coding of the
objectives:

M. Wiklund

-10-

High N. A. means high resolution,
but also small depth of field,
and small working distance

Magn. / N.A.

Working
distance
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More advanced objectives:

Basic microscopy properties

M. Wiklund

-11- From: http://zeiss-campus.magnet.fsu.edu/tutorials/

Resolution:

Basic microscopy properties

The imaged pattern of a point
source (the point spread function)

Smallest resolvable distance between
two point spread functions?( p p ) p p

D

M. Wiklund

-12-

Image:

Object:0.61
. .

D
N A




Example: N.A. = 1.4 (oil imm.)
λ = 458 nm (blue)  D = 200 nm
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Aberrations:

Basic microscopy properties

The fundamental resolution limit is diffraction-limited

Thus, the 200 nm resolution is close to the fundamental limit for
standard (visual) light microscopy

In reality, aberrations are often the bottle-neck for the resolution

Aberration-correction is made by combining several lenses:

An objective with very
high performance

M. Wiklund

-13-

(and cost), high N.A.
and low levels of
aberrations

From: http://www.microscopyu.com/

Aberrations:

Basic microscopy properties

Most important aberrations to correct:

Chromatic aberration Field curvature

Principle:

M. Wiklund

-14-

Examples:
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Aberrations:

Basic microscopy properties

Classes of aberration-corrected
objectives:j

NAME PERFORMANCE COST

Achromat Color-corrected, narrow band $

Plan Achromat Including field curvature correction $$

Fluorites Color-corrected, intermediate band $$$

From: http://www.microscopyu.com/

M. Wiklund

-15-

, $$$

Plan Fluorites Including field curvature correction $$$$

Apochromat Color-corrected, wide band $$$$$

Plan Apochromat Including field curvature correction $$$$$$

(The price range is typically 100-10.000 Euros)

Microscopy for lab-on-a-chip devices

What objective should I choose?

Let’s take the chip in the Wiklund
group as an example! 

glass (1 mm)

5 × λ/4-reflector
= 1 mm top glass
in Pyrex

M. Wiklund

-16-

glass (200 µm)
silicon (110 µm)

High resolution
 coverslip-thickness
of bottom glass

λ/4-reflector
 6.9 MHz
in Pyrex

λ/2-chamber
 110 µm
in water
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What objective should I choose?

Best objective for imaging a

Microscopy for lab-on-a-chip devices

“levitated” cell?

glass (1 mm)

M. Wiklund

-17-

glass (200 µm)
silicon (110 µm)

objective
immersion
medium?

What objective should I choose?

Immersion medium:

Microscopy for lab-on-a-chip devices

M. Wiklund

-18-
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What objective should I choose?

Low-N.A., no immersion medium (just air):

Microscopy for lab-on-a-chip devices

Good for imaging sharp in the whole channel
(depth-of-focus matching the channel height) 

glass

water

M. Wiklund

-19- objective

air

glass

What objective should I choose?

High-N.A., oil immersion medium:

Microscopy for lab-on-a-chip devices

Good for high-resolution imaging on the bottom of the
channel (smaller working distance, smaller depth-of-focus) 

glass

water optical focus

M. Wiklund
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objective

oil

glass



11

What objective should I choose?

High-N.A., water immersion medium:

Microscopy for lab-on-a-chip devices

Good for high-resolution imaging in the middle of the
channel (smaller working distance, smaller depth-of-focus) 

glass

water optical focus

M. Wiklund

-21-

objective

water

glass

What objective should I choose?

Summary
d

Microscopy for lab-on-a-chip devices

Do you need:
- Large or small depth-of-
focus

- Large or small field-of view
- Low or high magnification
- Low or high resolution

M. Wiklund

-22-
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Microscopy for lab-on-a-chip devices

How to design a chip compatible with (any kind of)
high-resolution optical microscopy?
You need a transparent chip with thin glass (from one side)!p p g ( )

Cross-section side-view

M. Wiklund

-23-

Top-view

Microscopy for lab-on-a-chip devices

How to design a chip compatible with (any kind of)
high-resolution optical microscopy?
You need a transparent chip with thin glass (from one side)!p p g ( )

But, do we really need transmission? Why not use
reflection microscopy?
Reflection microscopy is primarily designed for surface investigations
(such as printed circuit boards)

But, it works fine for non-transparent, or semi-transparent objects
(such as polystyrene beads, metals)

M. Wiklund

-24-

( p y y , )

2 µm beads, non-transparent chip 400 nm beads, non-transparent chip



13

Microscopy for lab-on-a-chip devices

How to design a chip compatible with (any kind of)
high-resolution optical microscopy?
You need a transparent chip with thin glass (from one side)!p p g ( )

But, do we really need transmission? Why not use
reflection microscopy?
Cells, however, are very transparent! 

M. Wiklund

-25-

Trapped COS-7 cells imaged with trans-
Illumination microscopy

Even if you have good resolution, your image is useless
without good contrast

Constrast modes

Tricky imaging task: Cells in a water-based medium
(cells are very transparent and contains mostly of water)

Solution: Add constrast by either a constrast agent
(fluorescent probe) or a constrast imaging technique

M. Wiklund

-26-
high contrast low contrast
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Contrast techniques

Examples of contrast techniques
(for bright-field microscopy)

S d d b i h fi ld i h h
...and the winner is...

Standard bright-field microscopy

Phase contrast microscopy

Photoshop

Differential interference

(often low contrast for cells in water)

M. Wiklund

-27-

Dark-field microscopy

Svennebring et al., Proc. of Micro-TAS 2007, Paris
Manneberg et al.,

Appl. Phys. Lett. 2008

Differential interference
contrast (DIC) microscopy

Contrast techniques

Phase contrast: Principles

Phase plate

Objective
Condenser

Specimen

M. Wiklund
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Phase plateSpecimen
Ring diaphragm

Phase contrast microscopy

Best for thin and highly transparent
materials 

Image from: K. Carlsson,
“Light microscopy”, KTH
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Contrast techniques

Dark field: Principles

SpecimenRing

Objective

Condenser
Specimenaperture

Image of
lamp

filament

M. Wiklund

-29-
Dark field microscopy

Only scattered light can enter the
objective

Need higher N.A. of the condensor
than of the objective

Image from: K. Carlsson,
“Light microscopy”, KTH

Contrast techniques

Differential interference contrast (DIC): Principles

Condenser

Specimen

Polarizer Objective

Beam splitter Beam combiner

Analyzer

Image from:
K. Carlsson,
“Light micro-

M. Wiklund

-30-
DIC microscopy

Produces “relief landscape” images
with “3D impression”

However, no topology information!

Can be used on thicker samples

g t c o
scopy”, KTH
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Contrast techniques

Contrast in epi-reflection mode (bright-field),
cells in suspensions?
In general, this should not be a veryg , y
successful idea

However, a nice example from the
Cardiff device (Prof. Coakley group,
now Despina Bazou):

... a little photoshopping...

M. Wiklund
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Fluorescence: Basic principles

Contrast agents – fluorescent probes

Image from:Image from:
K. Carlsson,
“Light micro-
scopy”, KTH

M. Wiklund

-32-

Energy level diagram
with the electronic states
S0 and S1, and the
vibrational levels

Absorption and emission
spectra of a typical
fluorophore
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Combining trans- and epi-
illumination

Bright field: Trans-illumination (from above)
Fluorescence: Epi-illumination (from below)

Full bright-field
+ fluorescence

flow

Fluorescence: Epi illumination (from below)
Yellow background due to the fluorescence filter cube
(blocking the blue wavelength band)

M. Wiklund

-33-

flow
Low bright-field
+ fluorescence

Combining trans- and epi-
illumination

Bright field: Trans-illumination (from above)
Fluorescence: Epi-illumination (from below)Fluorescence: Epi illumination (from below)

White light sources:
Mercury lamps often used in fluorescence microscopy

(can not be intensity-tuned, gray filters must be used)
Halogen lamps better suited for white light illumination

(can be intensity-tuned)
From: http://zeiss-campus.magnet.fsu.edu/

M. Wiklund

-34-
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Immuno-fluorescence: Contrast + specific imaging!
(Attach a fluorophore to an antibody)

Contrast agents – fluorescent probes

Example image:

Cyan: Nuclei

Magneta: Ki-67
(growth fraction marker)

Orange: Mitochondria

Green: Microtubules

M. Wiklund

-35-

Red: Actin filaments

Image from: http://www.probes.com/

Basic principles

Confocal microscopy

Image from:
K. Carlsson,
“Light micro-
scopy”, KTH

Images from:
http://www.zeiss.com/

M. Wiklund

-36-
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Summary of microscopy techniques

Left: DIC bright field Right: confocal fluorescence

1 m

M. Wiklund

-37-

100x-objective imaging of a B cell (human immune cell)
Red label: membrane probe (DiD)
Green label: viability probe (calcein-AM)

Manneberg et al., Appl. Phys. Lett., 2008

Confocal microscopy:
2D projections from 3D stacks

Rotating 3D view

A stack of 2D scans through the depth

side view top view side view top view

Fluorescent beads in
a rhodamine solution

M. Wiklund

a b

c d
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Without ultrasound With ultrasound

Positioning performance with B cells

One
well

M. Wiklund

100
wells

Vanherberghen et al, submitted manuscript

Video
demo

M. Wiklund

Vanherberghen et al, submitted manuscript
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Imaging the immune synapse in 
cells trapped with ultrasound

18 09 37 2618:09 37:26

45:23 49:17

M. Wiklund

Acoustic streaming characterization
with particle image velocimetry (PIV)

Particle image velocimetry 5 µm bead

1 µm bead

M. Wiklund
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Acoustic streaming characterization
with particle image velocimetry (PIV)

5 µm bead

1 µm bead

0
Truncated mean value µPIV

Particle image velocimetry
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40

Acoustic radiation force characterization
with particle image velocimetry (PIV)

5 µm beadParticle image velocimetry

M. Wiklund

Overlay of the PIV vector field when turning on the transducer, with the
image of trapped beads when a near-static bead distribution is obtained 
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Basic principle:
Pair wise image correlation for particle tracking

Particle image velocimetry (PIV)

-Pair-wise image correlation for particle tracking

M. Wiklund
t1 t2

Mathias Ohlin, Diploma Thesis, KTH, 2010

Particle image velocimetry (PIV)

Basic principle:
Pair wise image correlation for particle tracking-Pair-wise image correlation for particle tracking

M. Wiklund t1t1 t2
∆t = t2-t1

time separation
Mathias Ohlin, Diploma Thesis, KTH, 2010
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Particle image velocimetry (PIV)

Implementation:
-Defining interrogation windows

M. Wiklund

Mathias Ohlin, Diploma Thesis, KTH, 2010

Particle image velocimetry (PIV)

Implementation:
-Defining interrogation windows, correlation example

M. Wiklund

Mathias Ohlin, Diploma Thesis, KTH, 2010
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Particle image velocimetry (PIV)
What do you need?
1. A microscope and a camera
2. Open source PIV algorithms

(http://www.oceanwave.jp/softwares/mpiv/)
3 Optional: Graphical user interface (GUI)3. Optional: Graphical user interface (GUI)

(in-house developed, Mathias Ohlin, KTH, 2009)

M. Wiklund

Mathias Ohlin, Diploma Thesis, KTH, 2010

Particle image velocimetry (PIV)

Eckart streaming in a 96-well microplate

Image
Transducer

0
Truncated mean value µPIV with speed color coded pixels
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M. Wiklund
96-well microplate

Wiklund et al., J. Appl. Phys., 2004 Mathias Ohlin, Diploma Thesis, KTH, 2010
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Electrical considerations and Bubble 
behaviour in ultrasonic particle manipulation.
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In this talk:
• Electrical considerations

– How do we drive our devices, and choose the correct 
operating frequency?

– Electrical matching and cable effects

• Cavitation and behaviour of bubbles
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Back to the impedance spectrum…
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The origins of the Impedance spectrum

Images from “Guide to piezoelectric and dielectric ceramics”, Morgan Electroceramics.
http://www.morganelectroceramics.com/resources/guide-to-piezoelectric-dielectric-ceramic/

Simple model of a transducer near 
resonance

C0, R0 represent the electrical 
domain

C1, L1, R1 the mechanical domain

Series resonance includes C1,L1, R1 only.  Parallel resonance includes all components
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How do we choose our operating frequency?
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Impedance of a quarter wave layered resonator

Transducer (PZT26): 1mm thick
Matching Layer (ceramic): 1.42mm

Fluid Layer: 0.17mm
Reflector (glass): 1.45mm

-1 -0.5 0 0.5 1 1.5 2 2.5 3
0
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Frequency = 2.058MHz

Presenter
Presentation Notes
Note how the impedance is real (zero phase) at the resonance, and how the electrical impedance is at a minimum here.  The Q-factor is such that anywhere nearby the resonance is quite lively
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A case with weaker transducer/fluid coupling:

Transducer (PZT26): 1mm thick
Matching Layer (ceramic): 1mm

Fluid Layer: 0.35mm
Reflector (glass): 1.5mm

The resonance no longer occurs at the impedance 
minimum!
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Electrical Phase and Impedance at resonance

• The acoustic energy density in the fluid layer is often used 
in models to identify the desired operating point.

• If the transducer is strongly coupled to the device 
resonance, the phase will often be zero with an associated 
impedance minimum at this resonance.

• If the transducer is weakly coupled, the resonance does not 
occur at a well defined point on the impedance curve.
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Automatic resonance tracking
• In those cases where the electrical impedance is at a 

minimum, and the phase zero at resonance, tracking is 
straightforward.

• If the transducer is only weakly coupled to the resonance 
what can be done?

– Frequency sweeping (at expense of efficiency)

– Feedback from a detector hydrophone
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Driving electronics
• Signal generators

– Can drive small transducers directly
• RF power amplifiers

– Expensive, power hungry, and large
• Custom electronics:

– Consider the BUF634T driver opamp:  
250mA drive current at up to 
180MHz, 36Vpp maximum. 

– Or: LT1210: 1.1A drive at up to 
35MHz, 30Vpp.

These can be operated in pairs to double 
the output swing
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Matching
• In traditional transducer design inductive 

elements are often added to increase drive 
efficiency by forming a resonant circuit 
with the electrical capacitance, C0. This 
tuning can be difficult (Due to drift: 
thermal, mechanical)

• In layered standing wave ultrasonic 
devices this is not helpful as the 
transducer impedance is usually real at 
resonance.

• A transformer can be used to match this 
real impedance to the impedance of the 
driving amplifier and provide voltage gain.  
Typically 1-10 turns on a ferrite core up to 
20mm in diameter.

• Transmission line transformers can also 
be used.  These can be smaller and more 
efficient

The Guenalla 1:4 transmission line transformer.  
After Trask, “A Tutorial on Transmission Line 

Transformers”
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Cable effects 
• Resonance shift in  a transducer (50mmx 25mm) with 

changing lengths of coax cable (up to ~1.5m).
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Cable effects
• BNC cables are often used to hook-up devices.  What effect 

do they have on the system resonance?

– At 10MHz transmission line wavelength is ~20m so 
transmission line effects can usually be ignored.

– However, cables posses distributed capacitance and 
inductance, that can be of same order of magnitude as 
transducer parameters, causing a shift in the resonant 
frequency.  This must be modelled.

Other wire types also have an effect
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Modelled cable effects

Larger transducers Smaller  transducer
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Cable matching
• With 50Ω co-ax cable, larger transducers tend to have a 

shifted mechanical (series) resonance, while smaller ones 
have more of an electrical (parallel) resonance shift.

• Even with smaller transducers, higher inductance cables 
(eg. thin twisted pair wires), can cause a significant shift in 
the mechanical resonance.

• This may be useful for actively shifting resonances and 
node positions.
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Cavitation
• Types of cavitation

– Transient / Unstable
– Stable
And also:
– Cavitation microstreaming
– Rectified diffusion

Effects of transient cavitation:

Surface damage
Cell lysis

Photo Prof. LA Crum. Previously published:  Prosperetti, A., 
"Bubble phenomena in sound fields: Part Two," Ultrasonics  22, 

115-124, 1984 

Presenter
Presentation Notes
The term cavitation also used for bubble induced streaming – cavitation microstreaming – and rectified diffusion.
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Types of transient cavitation

From Tim Leighton ‘The 
Acoustic Bubble’
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Transient cavitation thresholds

Presenter
Presentation Notes
Seed bubbles required for cavitation
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Detection of cavitation
• Broadband noise

• Sonoluminescence 

When bubbles are present there are 
increased sub- and super- harmonic 
acoustic emissions (f/2, 2f, …) due to 
non-linear behaviour.

Kuznetsova et al, 2004
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Other Bubble behaviours
• Radiation forces: 

– Amplitude dependent

• Streaming (sometimes called 
cavitation microstreaming)

• Rectified diffusion

• Growth with temperature change

• Rotational phenomena (Miller  1977 
/ Coakley)

A.E. Elder , Cavitation 
microstreaming. J Acoust Soc Am
31 (1959), pp. 54–64. 

Presenter
Presentation Notes
Discuss causes of sonoporation
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L5:
Alternative contactless 
manipulation methods:
Dielectrophoresis andDielectrophoresis and

optical tweezers

Martin Wiklund
Dept  of Applied Physics

M. Wiklund

-1-

Dept. of Applied Physics
Royal Institute of Technology

Stockholm, Sweden

CISM course ”Ultrasound standing wave action on suspensions 
and biosuspensions in micro- and macro fluidic systems”,

June 7-11, 2010

Outline

1. Motivation

2. Background:g
Micro-manipulation of cells

3. Optical manipulation

4. Electrical (dielectrophoretic) 
manipulation

M. Wiklund

-2-

5. Combined approaches:

- Optical-electrical

- Electrical-acoustical
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Motivation
Micro-manipulation:
• Manipulation of

micrometer-sized
bio-objects by

Micro-
manipulation

external force fields

Target bio-objects:
• Cells, functionalized micro-

beads – approx. 1-30 m
• Bacteria – approx. 1 m

Nano-
manipulation

M. Wiklund

-3-

Future: Nano-manipulation?

Manipulation methods – an overview
Available techniques for manipulation of differently sized objects
Scale Techniques (examples) Applications (examples)

Macro-manipulation Manual, tweezers etc.
(>mm-range)( g )

”mini”-manipulation Fine tweezers, still
(sub-mm or mm- manual, microscope-
range) aided

Micro-manipulation Micro-pipettes, patch
(m-range) clamp approaches

Contactless:
Optical tweezers DEP

Laser-

tweezer

M. Wiklund

-4-

Optical tweezers
Ultrasound
Dielectrophoresis (DEP)

Nano-manipulation Atomic force microscopy
(sub m-range) (AFM)*

DEP*

Optical tweezers*

Ultrasound?
 not yet, really!

* Under certain fulfilled circumstances (e.g. particle type)

Ultrasound

DEP

30-nm beads
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Background:
Micro-manipulation of cells

• State of technology for one century: 
Grasp a cell with suction through a glass micropipette tip
[M. A. Barber, J. Kansas Med.Sot. 4, 489 (1904)] 

M. Wiklund

-5-

Handling can be stressful

=> Alternative: Contactless manipulation

Contactless methods:
Opto

- Optical tweezers (OT)

- Dielectrophoresis (DEP)

- Ultrasonic Standing Waves (USWs)

- Opto-
electronic
tweezers
(OET)

M. Wiklund

-6-

Ultrasonic Standing Waves (USWs)

- Magnetic manipulation
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Method 1:
Optical tweezers (OT)

M. Wiklund

-7-

Optical tweezers

- Developed in the 70s (Arthur Ashkin, Bell Labs)
- Found applications in the late 80s and 90s

Basic principle: Conservation of momentum
(mass x velocity) generates a force

You need a
laser and a
high-NA lens
(microscope

M. Wiklund

-8-

objective)
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Optical tweezers

- First demonstration in the 70s
(Arthur Ashkin, Bell Labs):

Two counter-directed laser beams 

First single beam trap in the 80s

M. Wiklund

-9-

- First single-beam trap in the 80s
(Arthur Ashkin, Steven Chu, Bell Labs):

Vertical highly focused laser beam

Optical tweezers - Principles

Why is the trapping point not in the focus?

Force: Transfer of momentum from incident photons to 
a dielectric particle, due to reflection, absorption, 
refraction

Two components:

M. Wiklund

-10-

p
1) Scattering force

(in the direction of light propagation)
2) Gradient force

(in the direction of spatial light gradient)

Gradient force only significant in highly focused 
laser beams!



6

Optical tweezers - Principles

Scattering force:
Due to reflection and
absorption

in
absorption

Gradient force:
Due to refraction

out

Fgrad

Fscat

M. Wiklund

-11-

(nparticle > nmedium

 Force towards
field maximum)

in
out

∆
momentum change

net force on
particle

Optical tweezers - Principles

Note:
If the particle is transparent,
Fgrad dominates      trapping

in
Fgrad dominates      trapping
close to the laser focus

If the particle is opaque,
Fscat dominates       particle
is pushed away from the
focus

out

Fgrad

Fscat

M. Wiklund

-12-

If the particle is semi-
transparent
particle is trapped
slightly away from the
laser focus

in
out

∆
momentum change

net force on
particle
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Laser tweezers – using Fgrad

Laser scalpel Eruption

Organelle trapping ER stretching

M. Wiklund

-13-

H. M. Hertz et al,
Ultramicroscopy, 57, 309 (1995)

3-D positioning for single-cell
imaging

Intracellular manipulation:

Protoplast from Arabidopsis thaliana,
chloroplast trapping and stretching of
endoplasmic reticulum (f>400 pN)

Eriksson et al., J. Opt. A: Pure. Appl. Opt.
9, S113 (2007)

Organelle trapping ER stretching

Laser tweezers – using Fscat

Lifting cells from wells: In bead-based immunoassays:

M. Wiklund

-14- J. R. Kovac and J. Voldman, Anal. Chem. 79, 9321, 2007

J. T. Soini et al.,
J. Pharm. Biomed. Anal.
34, 753, 2004

”Throw away” the bead you just
have analyzed
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Complex light patterns

- Multiple laser foci with
diffractive elements or
spatial light modulationspatial light modulation

- Opto-electronic tweezers
(use optical images on a photo-
conductive layer to produce ”virtual 
electrodes”) => dielectrophoresis

M. Wiklund

-15-

Prof. Ming Wu, UC Berkeley
Nature, July 21, 2005

Complex light patterns
Opto-electronic tweezers (OETs)
Video example: Parallel transport of 4.5 µm beads 

M. Wiklund

-16- Prof. Ming Wu, UC Berkeley in Nature, July 21, 2005
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Complex light patterns
Opto-electronic tweezers (OETs)
Video example: Concentration of live human B cells

M. Wiklund

-17- Prof. Ming Wu, UC Berkeley in Nature, July 21, 2005

Complex light patterns
Opto-electronic tweezers (OETs)
Video example: Optical conveyor belt for >10 µm beads

M. Wiklund

-18- Prof. Ming Wu, UC Berkeley in Nature, July 21, 2005
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Method 2:
Dielectrophoretic (DEP) 

manipulation

M. Wiklund

-19-

Dielectrophoresis: Basics
• Manipulation in high-frequency electromagnetic fields

• Contrast of the electric polarisability (particle rel. medium)

• Size and direction of induced dipole moment: 
Depend on the dielectric constant  (conductivity and permittivity) Depend on the dielectric constant  (conductivity and permittivity) 
=> Frequency-dependent

• If par>med
=> negative dielectrophoresis (nDEP)

else
=> positive dielectrophoresis (pDEP)

M. Wiklund

-20-
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Dielectrophoresis: Basics
• How do we get a force?

=> Inhomogeneous a.c. electric field

• nDEP: Particles are driven away from the electrodes
pDEP: Particle are attracted by the electrodes

• Most often used:
nDEP (multielectrode geometries drive the particles to the 

field minima)

• Length scale of the field inhomogeneities ~ 10 m

 for µm-sized partices,

M. Wiklund

-21-

electrodes must have
corresponding
dimensions!

DEP manipulation: Principles
• Microelectrode design:

Most simple:
- Pair of face-to-face mounted linear electrodes
More sophisticated:

”Sh d” l t d  i  ( i  d  t )- ”Shaped” electrode pairs (zig-zag, curved, etc.)
- Octopole cages (many electrodes)
- 2D arrays

M. Wiklund

-22-
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Instrumentation:
DEP chip (GeSim/Evotec)

• Chip: overview and fluid channel• Chip: overview and fluid channel

M. Wiklund

-23-

Three-layer chip design

M. Wiklund

-24-
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Typical DEP chip architecture
the Cytocon™-chip "SORTER“ (Evotec Technologies)

align

analyze

sort
separate

M. Wiklund

-25-

100 µm

Thus: spatially separated manipulation functions
(conveyor belt principle)

Deflector elements

• Sized-based separation
(erythrocytes from leukocytes)  

M. Wiklund

-26-

Linear deflector elements Curved deflector elements

Videos: Courtesy of Dr. Magnus Jäger,
Fraunhofer Intitute of Biomedical Engineering
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Combine two deflector elements

• Fast incubation by carrier medium exchange 
(particle ”dipping”)

M. Wiklund

-27-

Combine two deflector elements
• Fast incubation by carrier medium exchange 

(particle ”dipping”)

M. Wiklund

-28-
Videos: Courtesy of Dr. Magnus Jäger,
Fraunhofer Intitute of Biomedical Engineering
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Array of deflector elements
• Electric (flow-free) transport of particles

M. Wiklund

-29-
Videos: Courtesy of Dr. Magnus Jäger,
Fraunhofer Intitute of Biomedical Engineering

Array of cages
• Electric (flow-free) transport of particles

320×320 array of indepentent electrodes using
CMOS technologygy

M. Wiklund

-30- Fuchs et al., Lab Chip, 6, 121, 2006
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Field cage: nDEP with octode 
geometry

• 3D electrode arrangement,
8 electrodes with individually controlled amplitude and phase

M. Wiklund

-31-

Electro-rotation of a cell in a 
field cage

M. Wiklund

-32-
Videos: Courtesy of Dr. Magnus Jäger,
Fraunhofer Intitute of Biomedical Engineering
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Individual cell handling with a field cage:
Cell screening

• Controlled parking time for each cell

• “Waiting room” outside the cage

• Optical characterization, separation etc.

M. Wiklund

-33-
Videos: Courtesy of Dr. Magnus Jäger,
Fraunhofer Intitute of Biomedical Engineering

Time-dependent fluorescence 
analysis of individual cells

• Calcein-AMTM image of a trapped
l h  ll (J k t) i   fi ld lymphoma cell (Jurkat) in a field cage

• Washing without centrifugation

M. Wiklund

-34-
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Programmable particle 
movement

Modulation of the field amplitude

M. Wiklund

-35-

Application: Fluid mixing

Videos: Courtesy of Dr. Magnus Jäger,
Fraunhofer Intitute of Biomedical Engineering

Driving modes and field 
geometry of a cell cage

Geometry, phase angles 
of electric driving and 
force potential of octode p
field cages

Phase shift:
0° 90° 180° 270°

E visualised by 

Surface of constant mean square of E

M. Wiklund

-36-

E visualised by 
1 µm beads

Application:
Microcasting?

Videos: Courtesy of Dr. Magnus Jäger,
Fraunhofer Intitute of Biomedical Engineering
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Controlled positioning

• Amplitude modulation

M. Wiklund

-37-
Videos: Courtesy of Dr. Magnus Jäger,
Fraunhofer Intitute of Biomedical Engineering

Cell proliferation experiment

• Yeast cell cultivation in field cage

• Time span: 21 hoursp

M. Wiklund

-38-
Videos: Courtesy of Dr. Magnus Jäger,
Fraunhofer Intitute of Biomedical Engineering
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Single-molecule trapping with DEP

Trapping of R-phycoerythrin (RPE)
from red algae

Electrodes:
from red algae
(240 kDa protein, 11×6 nm)60 nm curvature of tip,

500 nm tip-to-tip distance

M. Wiklund

-39-

Hölzel et al., Phys. Rev. Lett. 95, 128102, 2005

Combine methods:
DEP + OT

DEP + USW

M. Wiklund

-40-
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DEP + OT

• Force measurements of ligand – receptor interactions

Two similar tools, but no mutual interference!

Cell: DEP manipulation

Bead (functionalized): OT 
manipulation

Binding forces: 2 pN - 200 pN

• Force measurements of ligand – receptor interactions

M. Wiklund

-41-

DEP + USW

• Parallel alignment of particles in one or several bands

• Combine with DEP elements

• Three independent forces:

- USW (long-range)
- DEP (short range)
- flow

M. Wiklund

-42-
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DEP + USW

M. Wiklund

-43-

5 m beads, switch between 10 and 2 MHz

DEP + USW

M. Wiklund

-44-
5 m beads, switch between 10 and 2 MHz Videos: Courtesy of Martin Wiklund, KTH and

Fraunhofer Intitute of Biomedical Engineering
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• High flexibility and precision
with three independent 
forces

DEP + USW

M. Wiklund

4 June, 2010
-45-

• Alignment, parking and enrichment of particles at exact 
positions (m-precision)

DEP + USW

positions (m-precision)

USW on, DEP on (hold) USW on, DEP off (release)

M. Wiklund

4 June, 2010
-46-
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• The different force field scales allow for handling of high 
particle concentrations

DEP + USW

Low USW field,
DEP deflector on

M. Wiklund

4 June, 2010
-47-

High USW field,
DEP deflector on

• Curved electrodes

• Step-wise merging and aggregation of particles

DEP + USW

• Step wise merging and aggregation of particles

M. Wiklund

4 June, 2010
-48-
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Final question:
Can we manipulate nano-particles with USW?

Micro-manipulation:
Only radiation forces

Nano-manipulation:
Radiation forces + acoustic streaming

2 m beads 400 nm beads

~2 MHz ~2 MHz

M. Wiklund

-49-

~6 MHz

~7 MHz

Or, just high bead concentrations
(radiation forces are enough!)

Conclusion
• Optical and electric (dielectrophoretic) manipulation of 

cells in microfluidic chips are sophisticated tools with high 
spatial accuracy (3D and single-particle compatibility)

• Acoustic manipulation is traditionally more suitable for 
long-range bulk manipulation, but is today also 
compatible with 3D and near-single-particle precision

• The different methods can be combined for inproved 
performance and flexibility

M. Wiklund

-50-

pe o a ce a d e b ty

• Optical and electrical manipulation can, under certain 
circumstances, be used for single nano-particle (<1 µm) 
manipulation

• This is not yet demonstrated with acoustic manipulation
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L3:
Ultrasonic cell handling:
Safety, biocompatibility 

d ll ll i t tiand cell-cell interaction

Martin Wiklund
Dept  of Applied Physics

M. Wiklund

-1-

Dept. of Applied Physics
Royal Institute of Technology

Stockholm, Sweden

CISM course ”Ultrasound standing wave action on suspensions 
and biosuspensions in micro- and macro fluidic systems”,

June 7-11, 2010

What is ”cell manipulation”?

State of technology for one century:
“Grasp a cell with suction through1st search result on ”cell Grasp a cell with suction through
a glass micropipette tip”
[M. A. Barber, J. Kansas Med. Sot. 4, 489 
(1904)] 

manipulation” on Google 
Images

M. Wiklund

-2-

Stressful
handling?Contactless

alternative:
Ultrasound!
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Is ultrasound harmful?

YES!

MR-HIFU system

M. Wiklund

-3-

HIFU lesions
in tissue

Is ultrasound harmful?

YES!

High-speed movie of
acoustic cavitation

M. Wiklund

-4-

Movie from Dr. Claus-Dieter Ohl,
Nanyang Tech. University, Singapore
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Is ultrasound harmful?

NO!

Diagnostic 

M. Wiklund

-5-

Diagnostic 
ultrasound 
today
(45 years later)

Diagnostic 
ultrasound 1965
(Marvin Ziskin lab)

Is ultrasound harmful?

Balanced answer:
Depends on system design,
amplitudes, frequencies,
application/device design, 
cell/tissue type ...etc, etc.

M. Wiklund

-6-

What do we need to control?

Primarily: Temperature and 
occurance of cavitation and/or 
microjets/flow



4

Compare with diagnostic ultrasound
We keep track of the thermal index (TI) and the
mechanical index (MI):

M. Wiklund

-7-

Thermal and mechnical index

Definitions:

Thermal index (TI):

Mechanical index (MI):

1 C

transducerP
TI

P




Power produced by the transducer

Power needed to raise the temperature 1˚C

M. Wiklund

-8-

np

c

p
MI

f
 Negative peak pressure (absolute value)   [in MPa]

Center frequency [in MHz]

Safe side: Both TI and MI should be less than 1!
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Biocompatibility of
Ultrasonic Standing Wave (USW)

manipulation systems

What about standing waves?g
”Because cavitation tends to be greatest at maxima of the 
pressure amplitude, the radiation force provides a 
protective effect on cells in test tubes”
(Wesley Nyborg, Ultrasound Med. Biol. 27, 301, 2001)

“Standing wave ultrasound appears to be less damaging 
than propagating ultrasound”

M. Wiklund

-9-

(Yusuf Chisti, Trend. Biotechnol. 21, 89, 2003)

“As a concequence of the trapping of cells in the anti-nodes 
planes of the standing wave, propagating wave fields 
reduced cellular viability compared with standing wave 
fields at equal energy density.”
(Hannes Böhm, Ultrasonics 38, 629, 2000)

Biocompatibility of
Ultrasonic Standing Wave (USW)

manipulation systems

What about radiation pressure?p

No evidence of any direct damaging effect on cells (in vitro)

Exceptions: In vivo measurements on nerve cells
Tactile sensations in humans
(Dalecki et al., J. Acoust. Soc. Am. 97, 3165, 1995)

Altering of bioelectric activity in frog sciatic nerve

M. Wiklund

-10-

(Mihran et al., Ultrasound Med. Biol. 16, 297, 1990)

However 1: The effect in above examples does not need to be 
harmful! (Cf: Physiotherapeutic ultrasound)

However 2: Radiation pressure is least at
the pressure nodes of a standing wave
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Biocompatibility of
Ultrasonic Standing Wave (USW)

manipulation systems

What about acoustic streaming?g

Streaming is known to cause shear stress damage on cells, 
potentially leading to cell lysis
(W. Nyborg, Ultrasound Med. Biol. 27, 301, 2001)

However, significant streaming velocities are needed to 
create damage, such as from acoustic microstreaming/jets 

d b  bl  i i  b bbl

M. Wiklund

-11-

generated by stable cavitation bubbles
(S. B. Barnett, Ultrasound Med. Biol. 20, 205, 1994)

Smaller streaming velocities may be beneficial!
E.g. for fluid stirring, exchange of nutrients, enhanced metabolic 
productivity of cells, proliferation rates, etc.
(Y. Chisti, Trend. Biotechnol. 21, 89, 2003) 

Any effects by unknown causes?
Vacuole membrane
damage in yeast
(USW field)
S  Radel et al  Ultrasonics

Before ultrasoundBefore
ultrasound

S. Radel et al, Ultrasonics,
38, 633, 2000 (left images)

S. Radel et al, Bioseparation
9, 369, 2001 (right images)

After ultrasound

Intact vacuole
membrane

M. Wiklund

-12-

After
ultrasound

Vacuole membrane
is broken

Wikipedia

Plant cell

Animal cell



7

Any effects by unknown causes?
A recent study with pregnant mice (Ang et al, PNAS, 103, 12903, 2006):

Brain damage due to heterotopia
(disturbance in the migration of
neurons to the cortex in the brain)neurons to the cortex in the brain)
“The dosimetry data and output parameters suggest 
that the mechanism may be a nonthermal, 
noncavitational, mechanically mediated effect, perhaps 
involving radiation force or microstreaming, or shear 
effects on cellular walls” (Ang et al)

Applicable to humans?

M. Wiklund

-13-

Biocompatibility of
Ultrasonic Standing Wave (USW)

manipulation systems

Conclusion:

You must investigate the biocompatibility 
of you own device in your own application!

M. Wiklund

-14-
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Biocompatibility of
Ultrasonic Standing Wave (USW)

manipulation systems

Best example of a biocompatible USW device:Best example of a biocompatible USW device:
Acoustic cell filters/bioreactors
Up to 700 h (≈1 month) of continuous
acoustic exposure did not alter the
viability or antibody secretion rates
of hybridoma cells
(Felix Trampler et al., Bio/Technology 12, 281, 1994;
review article: Shirgaonkar et al., Biotech. Adv. 22,
433, 2004)

M. Wiklund

-15-

433, 2004)

Later (1997): SonoSepTM and BioSepTM

Claimed performance: Cultivation >60 days
Typical power:            0.1-1 W/ml
Perfusion rate:            ~1 l/h
Note: Cells not always in the acoustic
chamber!

Biocompatibility of
Ultrasonic Standing Wave (USW)

manipulation systems

Corresponding pressure levels?

0.1-1 Mpa (acoustic pressure amplitude)

Compare: Cavitation threshold was 2 MPa 
in a study by Bazou/Coakley

M. Wiklund

-16-

Claimed performance: Cultivation >60 days
Typical power:            0.1-1 W/ml
Perfusion rate:            ~1 l/h
Note: Cells not always in the acoustic
chamber!

(D. Bazou et al., Ultrasound Med. Biol. 31, 423, 2005)
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Measuring viability of trapped cells
in USW manipulation devices

How do we know if a cell is alive or dead?

l d /fl l h dMost commonly used: Dye/fluorescence exclusion methods 
(integrity of the cell membane)

Ex: Trypan Blue (blue dye goes into dead cells)
Propodium Iodide, PI (can not penetrate the cell membrane, 
its red fluorescence is enhanced 20-30-fold when it binds to DNA
 dead cell turns red)
Calcein AM (penetrates the cell membrane, its green 

M. Wiklund

-17-

fluorescence is activated by an enzymatic process in live cells
 dead cells loose their
green color)

Double-labeled cells (calcein AM + PI)
in one well of a 384-well plate
(Green=live; red=dead)

Measuring viability of trapped cells
in USW manipulation devices

How do we know if a cell is alive or dead?

h f d h d ll h lOther more refined methods: Cell morphology

Ex: ”Cell blebbing” during the initiation of apoptosis

M. Wiklund

-18-
Images from: http://www.xinkexue.com/
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Measuring viability of trapped cells
in USW manipulation devices

How do we know if a cell is alive or dead?

h f d h d ll h lOther more refined methods: Cell morphology

Ex: ”Cell blebbing” during the initiation of apoptosis

Killing of human
embryonic kidney
(HEK) cells by
natural killer (NK)

HEK cell NK cells

M. Wiklund

-19-

cells

Images from
Bruno Vanherberghen
KTH

HEK cell NK cells

By the use of high-resolution optical (confocal)
fluorescence microscopy: Both morphology and

Measuring viability of trapped cells
in USW manipulation devices

fluorescent probe classification can be used

1 m

M. Wiklund

-20-

100x-objective imaging of a B cell (human immune cell)
Red label: membrane probe (DiD)
Green label: viability probe (calcein-AM)

Manneberg et al., Appl. Phys. Lett., 2008
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My own investigations (Wiklund group)

Biocompatibility of
Ultrasonic Standing Wave (USW)

miniaturized manipulation systems

Cells after three days of re-culti-
vation following ultrasound
exposure

Initial study 2006-2007:
- Cells trapped and retained in a glass-PDMS chip
- Proliferation measurements after ultrasound exposure
 75 min exposure to 0.85 Mpa and 3 MHz is OK!

Trapped COS-7 cells
(Calcein AM labelled)

M. Wiklund

-21- J. Hultström et al, Ultrasound Med. Biol., 33, 145 (2007) 

- No deviations from expected proliferation rates
C ll ll  b fi i l f  lif i ?

Biocompatibility of
Ultrasonic Standing Wave (USW)

miniaturized manipulation systems

- Cell-cell contact beneficial for proliferation?
(compare control cells – USW exposed cells)

M. Wiklund

-22-

Doubling time from 
literature: 24-48 h

J. Hultström et al,
Ultrasound Med. Biol.,
33, 145 (2007) 
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Biocompatibility of
Ultrasonic Standing Wave (USW)

miniaturized manipulation systems
Temperature control

- Calibration of the temperatre increase vs. transducer 
voltage

- Can be used for heat regulation together by pre-setting of 
the external temperature 

Aimed temp.

M. Wiklund

-23- Svennebring et. al., J. Micromech. Microeng., 17, 2469, 2007

p
Pre-heated temp.

37°C @ 13 V

Biocompatibility of
Ultrasonic Standing Wave (USW)

miniaturized manipulation systems
Temperature control: Demo
a) Temp. versus time,

varying the
actuation frequency

b) Temp. versus time,
varying the
actuation voltage

c) Temp. versus

M. Wiklund

c) Temp. versus
actuation voltage

d) Demo of temp. control

Transducer heating

Microscope frame
heating

Vanherberghen et al, submitted manuscript (2010)
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Biocompatibility of
Ultrasonic Standing Wave (USW)

miniaturized manipulation systems
Proliferation of B cells over 3 days
d i i l dduring continuous ultrasound exposure

M. Wiklund

Vanherberghen et al, submitted manuscript (2010)

Biocompatibility of
Ultrasonic Standing Wave (USW)

miniaturized manipulation systems
Viability data

M. Wiklund

Vanherberghen et al, submitted manuscript (2010)
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Some application examples:
Cell-cell interaction studies

M. Wiklund

Imaging protein clustering and 
membrane spreading in nerve 
cells trapped with ultrasound

M. Wiklund

spot-like
protein
cluster

spread
protein
cluster D. Bazou et al., Mol. Membr. 

Biol. 25, 102, 2008
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3D aggregates produced by ultrasound, 
stabilized with lectin crosslinking

Different resonators for cell aggregate formation,
based on plane-parallel and/or tubular geometriesbased on plane parallel and/or tubular geometries

M. Wiklund

L. A. Kuznetsova et al., AIChE, 25, 834, 2009

Electron microscope image
f RBC 

Electron microscope image
f ll

3D aggregates produced by ultrasound, 
stabilized with lectin crosslinking

of RBC aggregates of HepG2 cell aggregates

M. Wiklund

L. A. Kuznetsova et al., AIChE, 25, 834, 2009
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3D aggregates produced by ultrasound, 
followed by gel encapsulation

HepG2 cells, 0 days
in culture

HepG2 cells,
3 days
in culture

Confocal slices
at different
depths

Conclusion:
Higher
viability

M. Wiklund

depths
(Calcein AM),
10 days in
culture

D. Bazou et al.,
Toxicol. In Vitro,
22, 1321, 2008;
D. Bazou et al.,
Cell Biol. Toxicol.
26, 127, 2010

viability
for thinner
aggregates
(~10 cell
layers),
otherwise
hypoxia! 

Background, Natural killer (NK) cells:

• Third largest population of white blood cells

Imaging the immune synapse in 
cell pairs trapped with ultrasound

• NK cells are part of the innate
immunity and can act fast,
e.g. during initial stages of
infections

• NK cells recognize and kill
tumour cells or virus

M. Wiklund

tumour cells or virus
infected cells

• Killing is mediated through
recognition of cell surface
ligands during formation
of an “immune synapse”
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Activating or inhibitory interaction:

Imaging the immune synapse in 
cell pairs trapped with ultrasound

M. Wiklund

Imaging the immune synapse in 
cell pairs trapped with ultrasound
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Summary

- Biocompatibility of USW devices depend on 
many factors: Amplitude, frequency, device 
d i  ll t  li ti  tdesign, cell type, application, ...etc.

- Some investigations suggest that ultrasound 
can damage cells or cell functions

- Other investigations suggest that ultrasound 

M. Wiklund

-35-

may be beneficial for the cells or cell 
functions
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Lecture 5: Experimental Characterization 
J. Dual, ETH Zurich, Switzerland 
 
When characterizing devices used for ultrasound manipulation, a number of 
techniques are valuable, among others: 

- microscopy (see lect. By M. Wiklund) 
- admittance curves for the transducer (see lecture on piezoelectricity by M.Hill  
 and J. Dual) 
- laser interferometry 
- modal analysis 

In this lecture the focus is put on laser interferometry, modal analysis and a specific 
example, described in [1]. 
 

Laser Interferometry 
Laser interferometry is a very useful technique, when displacements or velocities on 
surfaces need to be measured, because it is a contactless measurement technique. 
Therefore, the measurement does not disturb the motion to be measured. 
The propagation of light is described by Maxwell’s equations. Linearly polarized 
harmonic light (e.g. from a laser with sufficiently long coherence length) propagates 
with the wave speed c = 2.998 108 m/s in vacuum. It is described by 
 

E = Ey ey = A Cos(t - kz) ey ,  
 
where E is the electrical field, is the circular frequency and k = /c. The typical 
wavelength is around 600 nm. 
The frequency of the visible light (1015 Hz) is too high to be detected directly, 
therefore detectors are used that measure the time averaged energy flux, the intensity 
I, which is proportional to 
  
 I =   b { E2 } 
 
b is an arbitrary constant,which is dropped in the following. If two light waves are 
superimposed on each other, the resulting intensity is 
 
 I = { E12 } + { E22 } + 2 { E1 . E2 } 
 
If they have the same polarization direction and are described by 
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 E1 = A1 Cos(t - k1 . r) und E2 = A2 Cos(t - k2 . r +  ) 
 
One obtains  
 
 I = I1 + I2 + 2 I1I2  cos       



where  = k2 . r - k1 . r  -  
2

s
 


   

 
s is the difference in path length. Therefore the intensity varies between a minimum 
(  = (2N -1)π ) and a maximum ( = 2 N π) , depending on the phase difference  
between the two waves.  
 
Michelson Interferometer 
 
In a Michelson interferometer configuration the two waves are generated with a beam 
splitter (that preferably is polarization sensitive). The object beam is reflected from 
the object, the reference beam from a fixed reference mirror. 
 

einfallende Welle

Spiegel ( Referenz )

Spiegel ( Objekt )

Strahlenteiler

Detektor  
 
If the object moves, the intensity acc. to eq. 1 will vary, as the path length difference 
is a function of time. The interferometer therefore measures the displacement of the 
object point in the direction of the laser beam.  
This intensity variation is detected with a photodiode and demodulated using: 

- fringe counting or phase demodulation to yield displacement 
- frequency demodulation to yield velocity 

In order to eliminate low frequency motions ( caused by thermal drift, shocks, etc.) 
the reference mirror can be mounted on a piezoelectric element ( for low frequency 
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path length stabilization ) or its influence on the signal is eliminated in the 
demodulation process. 
In order to discriminate between motion towards and motion away from the laser, 
often a process called heterodyning is used, where at least one of the beams is shifted 
in frequency e.g. using an acoustooptic modulator. Upon interference the voltage 
signal then has a carrier frequency equal to the difference frequency of the two 
beams.  
More specifically: Let us assume the two beams have a path difference given by 
 
 s(t) = s0 + 2 (t) (2) 
 
s0 is the static difference, which needs to be smaller than the coherence length of the 

laser. The two beams are described by 
 
 a1 = a10 sin( 2  (  + f1) t + k x ) 
 a2 = a20 sin( 2  (  + f2) t + k x )  
 
where ai0 are the respective amplitudes and fi are the frequency shifts. This results in an 

intensity at the detector 
 
I(t) = a102 sin2[ 2  (  + f1) t ] + a202 sin2[ 2  (  + f2) t + k s ] + 
 a10 a20 {cos[ 2  ( f1 - f2) t - ks ] - cos[ 2  ( 2 f1 + f2) t + ks ]}  
     
Because of the low pass behavior of the photodetector, all the terms containing  are 
averaged to yield a DC voltage V0.  

 V(t) = V0 + K a10 a20 cos[ 2  ( f1 - f2) t - 0
2 (s 2 (t)

 


] (3) 

 
where K is a constant. Eq. 3 describes a phase modulated signal with carrier frequency 
fC = f1 - f2 .  

Alternatively, this can be interpreted as a frequency modulated signal 
 

 (t) = 2 f*(t) dt    or 
d
dt    = 2f*  

 
where und f* are phase and frequency of the signal.   
Combined with eq. 3 one obtains 
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d
dt    = 2fc - 4 d

dt
 


= 2fc - fD) 

 

 fD = 2 d
dt



 (4) 

 
is the Doppler frequency. The frequency modulated signal is then 
 
 V(t) = V0 + K a10 a20 cos[ 2  ( fc - fD) t ] (5) 
 
When the structure to be investigated is very small, the object beam needs to be 
precisely focused. This is best done with a fiber optic interferometer, where a spot size 
of < 5m can be obtained. When both arms of such an interferometer are reflected at 
different points on the object, the difference of the displacements is measured. 
In plane displacements can also be measured, e.g. in the following configuration: 
  

 

Objekt

Laserstrahl

Bauernfeind Prisma


0

 
 
Because here the light needs to be retroreflected, a special tape is used for this purpose. 
However, this might not be feasible if the structures are very small, because of the 
additional mass loading. 
 
There are various other methods available, e.g. a Fabry Perot Interferometer, 
where a frequency dependent multiple reflection is used as the basic principle.  
 
Obtainable resolution in interferometry 
When comparing different interferometer systems, the SNR ( signal to noise ratio) 
and the frequency range are crucial. The theoretical maximum resolution is limited by 
shot noise at the detector. 
As a measure for the resolution one can take the displacement for SNR = 1. In general 
it is given by 
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 min =  k 
f

P0
  

 
where   Detector efficiency e.g. 10% )  
  P0 Laser power ( e.g. 1 mWatt ) 
  f bandwidth 
  k  a constant 
 
For all interferometers in the text, a typical value is  
 
  min  1 1014 m / Hz    
 
For a bandwidth of 1 MHz one can therefore expect a maximum resolution of   
10-11m. By averaging this value can be further improved. 
    
 

Modal Analysis 
 
Modal analysis is a widely used method to characterize a structure dynamically in 
terms of its resonance frequencies, damping and modes of vibrations. For every 
device an infinite number of resonances exist. In many cases the lowest resonances 
are most important.  For every mode, in principle the whole structure is involved. 
 
For ultrasonic manipulation devices, typically piezoelectric elements are used to 
excite the structure and as well to measure the response. (Admittance curves) 
Alternatively, a laser interferometer can be used. 
 
If only the resonance frequencies and their damping are needed, in principle it is 
sufficient to measure the transfer function between excitation at position r1 and 
response at position r2. If neither of the two positions is a node of one of the 
resonance modes, all the frequencies and damping values can be found.  
If the mode shapes are also important, then the structure can be scanned, which might 
be a challenge, if the structure is small, however gives much more information about 
the particular mode shapes. 
 
If the resonance modes are separated enough (depending on damping) one can 
decouple the resonances and consider them as single degree of freedom oscillators. 
This corresponds to the modal decomposition in a FEM analysis.  
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 m x,tt +  x,t + cx = F 
 
with the transfer function G for harmonic excitation 
 

 G x

F
  = 

1
m   

1
02 - 2 + i  /m         (6) 

 
Also the quality factor Q can be defined for the respective mode 
 

 0 0 0

2 1

mQ   
  

   
 

 
2  and 1 are the circular frequencies, which correspond to phase values of the 

resonance phase +/-  /4. For Q >10 these are also the frequencies, for which the 
amplitude is 2 / 2  of the maximum amplitude. Q is therefore given by the resonance 
frequency divided by the bandwidth.  
The total transfer function can then be composed of the sum 
 
 G = G1 + G2 + ... 
 
where each mode will have different parameters. Using partial fractions one obtains 
 

 G =  
1

 2 i 0 m
  (  

1
i +   -  

1
i +  )      (7) 

 

where      = 


 2 m   -  i0  

and    = 


 2 m   + i0 

 
For positive  and damping which is not too large, the first term in eq. 7 dominates in 
the vicinity of  0. If one plots Re(G) = x and Im(G) = y in the complex plane, we 
obtain the equation of a circle, which can be used to fit the damping. 
 

 x2 +  ( y + 


 2 0 
   )2 = (


 2 0 

 )2  
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-60 -40 -20 20 40 60

-70
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-40
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Complex representation of the transfer function in the complex plane. Please note the 
insufficient frequency resolution that might result from the application of the discrete 
Fourier transform, when the damping is low.  
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bstract

An ultrasonic micropositioning system which is capable of separating particles into distinct and observable lines has been modeled using a
nite element approach. The use of such a contactless manipulation method is believed to have many applications in the fields of microtechnology,

ife-sciences and lab-on-a-chip devices, one example would be in cell assays. The device consists of an etched silicon wafer which is bonded
o a piece of glass the etched area can thus be filled with a fluid containing suspended particles. When the system is excited to vibration by the

acro-piezoelectric plate attached on the underside of the silicon wafer, a pressure field is established throughout the fluid volume. When an
nhomogeneity in a fluid is exposed to an ultrasonic field the acoustic radiation force results, this is found by integrating the pressure, retaining

econd order terms, over the surface of the field and taking the time average. Consequently, due to the presence of a pressure field in the fluid
n which the particles are suspended, a force field is created. The finite element model is shown to be able to predict the frequencies at which
esonance occurs, and the resulting modal shapes.

2006 Elsevier B.V. All rights reserved.
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. Introduction

The manipulation of suspended particles, a term used here
o refer to inhomogeneities within a fluid which may consist
f micro-sized solid particles, biological cells or droplets of an
mmiscible fluid, within microfluidic systems has many applica-
ions. One method of doing this is to use acoustic radiation forces
enerated by an ultrasonic pressure field. When a suspended
article interacts with an ultrasonic wave, when the pressure is
ntegrated over the surface of the sphere whilst retaining second
rder terms, and time averaged the result is the acoustic radiation
orce. Other methods for the contactless manipulation of parti-
les include laser traps, suction pipettes and dielectrophoresis
DEP). These will be briefly described, so that the advantages

f ultrasonic methods can be established. Laser traps or optical
weezers are capable of exerting forces on particles of a refrac-
ive index different to that of the surrounding medium. With this

∗ Corresponding author at: Institute of Mechanical Systems, CLA G21.1, ETH
entrum, 8092 Zürich, Switzerland. Tel.: +41 1 632 77 57;

ax: +41 1 632 11 45.
E-mail address: adrian.neild@imes.mavt.ethz.ch (A. Neild).

m
b
a
i
h
A
i
m

925-4005/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
oi:10.1016/j.snb.2006.04.065
ethod it is possible to manipulate single particles. However, a
article can only be manipulated after its position was identified.
well-established method for the manipulation of single cells is

he suction pipette, again a single particle can be handled after it
as been located. DEP refers to the force exerted on the induced
ipole moment on an uncharged dielectric and/or conductive
article by a non-uniform electric field. Thus it is necessary to
xpose the particles to electrical fields, a point which may not be
esirable in the handling of cells; in addition the induced force
eld only extends a short distance from the electrodes.

The limitation of optical tweezers to the manipulation of sin-
le micron-sized particles is due to the optical wavelength being
imilar in size to the particle diameter, whilst in an ultrasonic
ystem these would typically differ by two or more orders of
agnitude; hence the periodicity of the standing wave field can

e used to simultaneously position many particles. In addition,
s the ultrasonic field is present throughout the fluidic volume, it
s not necessary to first identify the location of particles prior to

andling, and exposure to large electrical fields does not occur.
major area in which the handling of particles is of importance

s that of life-sciences. Much work has recently been focused on
icro-total analysis systems (�TAS) and lab-on-a-chip devices

mailto:adrian.neild@imes.mavt.ethz.ch
dx.doi.org/10.1016/j.snb.2006.04.065


Actua

[
i
s
i
m
b
c
d
u

h
s
t
t
t
i
fi
p
c
r

u
t
t
e
f
a
t
a
t
w
i
t
s
u
i
a
fi
d
t
l
m
e
t

h
t
[
l
l
i
w
t
i
p
p
e

t
s
a
t
o
w
p
n
W
a
t
m
t
i
a
t
b
c
p
e
t
a
f

2

d
T
t
c
s
o
1
c
recess, when this layer is adhered to the glass the recess forms
the fluid cavity (light gray). For a device of this size it is sufficient
to glue these layers together, for smaller devices anodic bonding
may be required. For the purpose of experimentation the cavity
A. Neild et al. / Sensors and

1,2], in which many steps are taken in the analysis of a substance
n a single microfluidic device. Whilst the handling of very small
tructures such as DNA and proteins would require a step change
n the ultrasonic frequencies currently being used in ultrasonic

anipulation devices, the handling of cells is a proven possi-
ility. Thus possible applications in life-sciences include flow
ytometry, cell fusion, and applications where cells need to be
ivided into clumps to be treated differently whilst being kept
nder observation such as cell assays.

Filtration is an area in which a substantial quantity of work
as been done using acoustic forces. Acoustic filters have been
hown to be capable of partially separating two phases, provided
hat at least one is liquid or gaseous [3–5]. These devices are mul-
ilayered resonators and as such are treated as 1D systems [6,7];
he layers include a fluid and piezoelectric plate. The system
s actuated by the piezoelectric layer, which causes a pressure
eld to be established in the fluid, the nodal planes of which are
arallel to the piezo. When operated as a filter, the particles are
ollected at the nodal planes and the clarified fluid can then be
emoved separately, leaving a concentrated solution of particles.

By extending the concept of capturing particles in planes
sing a sound field varying in one dimension, it is possible
o trap particles in lines or points by using more complicated
wo- or three-dimensional sound fields. Various suggestions and
fforts have been made in this direction. One principle uses two
ocused ultrasound beams that propagate in opposite direction,
nalogous to optical tweezers. Particles are collected between
he focal points of these two beams [8]. Other approaches use
plurality of transducers that are driven independently. Often

hese transducers are created by one piezoelectric plate or shell
ith the electrode being cut into many areas. These approaches

nclude the use of line-focused transducer with multiple elec-
rodes, as described by Kozuka et al. [9], resulting in the pos-
ibility of transporting particles two-dimensionally. Numerous
ltrasound transducers functioning independently of each other
s also an approach taken by Mitome et al. [10] and Umemura et
l. [11]. The resulting sound field is a superposition of the sound
eld from each of the transducers. Barmatz and Allen [12] have
escribed an apparatus for levitating an object acoustically. Par-
icles and cells have also been positioned in both clumps and
ines by the pressure field coupled into a fluid volume by the

ovement of a glass plate excited to vibration by shear piezo-
lectric elements which are attached between the outer edge of
he plate and a clamping mechanism [13–15].

In addition an increasing number of microfabricated devices
ave been described in the literature. These include acoustic fil-
ers, using a 1D acoustic field excited by a macro-piezoelectric
16,17]. A further essentially 1D device is described by Lil-
iehorn et al. [18], in which particles are trapped at certain
ocations, by multiple piezoelectric elements, within a microflu-
dic system. Devices for micropostioning have been also devised,
hich collect particles in planes perpendicular to the plane of

he piezoelectric plate used to activate them. As this dimension

s usually kept small it means that particles throughout the nodal
lanes can be observed. Hence particles can be positioned for
urposes such as flow cytometry [19] or automated gripping by
xternal bodies [20]. The pressure fields of these devices are

F
d
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ypically 1D, however the behavior of the system to generate
uch a field is considerable more complicated that in the case of
n acoustic filter. Dougherty and Pisano [19] presented a sys-
em which uses two coplanar transducers which are driven out
f phase to each other. Whilst Petersson et al. [21] dispensed
ith the need for two out of phase drive signals by activating a
iezoelectric plate in phase at frequencies in which such a reso-
ance in the fluid perpendicular to the plate occurs. Furthermore,
iklund et al. [22] have presented a device in which the actu-

tion is a piezoelectric element coupled through a wedge into
he system. The device used here and first described in [23] is a

icropositioner, it is activated by a strip of electrode defined at
he edge of the piezoelectric plate. Advantages of this method
nclude the removal of the requirement for a phase shifted signal,
larger number of modes can be excited and that it is believed

hat by arrangement of two orthogonal electrodes a system can
e developed in the future which is capable of positioning parti-
les in lines or points in a manner akin to that used by the authors
reviously [13,14]. This system has been modeled using a finite
lement approach, and the emphasis of this work is assessment of
he accuracy of such a model, the cause of inaccuracies detected,
nd the demonstration of the necessity of modeling such systems
or design purposes.

. Device and model description

The ultrasonic micropositioning system presented here is
epicted in Fig. 1. It consists of three layers adhered together.
he 2D is shown in Fig. 1b, it extends a distance of 25 mm in

he z-direction. The upper layer is glass (shown as white in the
ross-sectional view), and so allows visual access to the particles
uspended in the fluid cavity beneath, it is fabricated by cutting
f a standard glass slide with a wafer saw, and has a width of
2 mm and thickness of 1 mm. The center layer is made of sili-
on (black), it has a 5 mm wide and 200 �m deep DRIE etched
ig. 1. 3D (a) and 2D cross-sectional (b) schematics of the micropositioning
evice.
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Fig. 2. A plot of the pressure (grayscale) along the lower surface of the fluid
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s loaded by applying a droplet into a well at either end of the
evice (not shown in Fig. 1), these wells are also etched into the
ilicon layer (200 �m deep, half circles of 5 mm diameter), but
re not covered by the piece of glass. The cavity is then filled by
apillary forces. The third layer is the piezoelectric plate (dark
ray). This is 5 mm in width and 0.5 mm in depth, it is glued to
he underside of the silicon, and is aligned with the fluid cav-
ty. The upper electrode of the piezoelectric plate is grounded.
he lower electrode has been cut to a depth of 30 �m, in order to
reak the electrical contact; this cut is a distance of 700 �m from
he edge and travels the full length (25 mm) of the piezoelectric
late. The resulting strip electrode is activated with the required
lectrical signal, the remaining area of the lower electrode is
rounded. The reason for such a method is that it allows a wave
o be excited which travels along the piezoelectric and 100 �m
hick silicon composite plate, this vibrating plate couples to the
djacent fluid volume. The result is a large number of resonant
odes, more than if the full surface is activated, which is ben-

ficial for this work as a larger set of results can be compared
ith simulation. In addition, research into this arrangement will

llow future possibilities of using orthogonally orientated elec-
rodes to set up pressure fields capable of positioning particles
nto clumps [13], as well as the lines possible in this device. The
evice is held at each end, by attaching the underside of the sil-
con part to a support at the location where the wells are etched.

A finite element approach has been used to model the sys-
em in the two dimensions shown in Fig. 1b. This has been
one using the commercially available program Femlab, a par-
ial differential equation solver with combined meshing abilities.
he electrical boundary conditions used were a sinusoidal sig-
al applied to the strip electrode on the lower surface of the
iezoelectric plate, and ground on the upper and remaining part
f the lower electrode. For the structural boundary conditions
ree displacement was defined at all external edges of the 2D
odel. In addition it was necessary to define a fluid structure

nteraction, between the fluid and adjacent bodies. The program
s modular based, the modules used being piezoplane strain,
lane strain for the glass and silicon parts, and acoustic for the
uid. The governing variables being displacements in the x- and
-directions (u, v) for the first two modules, and pressure (p) for
he third, in addition voltage (V) for the piezoelectric module
s required. Consequently in defining the fluid structure interac-
ion, the force balance becomes an area load (Fn/A) applied on
he solid elements:

n = −Aρf
∂φ

∂t

∣∣∣∣
s

⇒ Fn

A
= −nsp (1)

ith ns being the vector normal to the interface surface, φ the
elocity potential (in the fluid) and ρ is the fluid density. In addi-
ion the equating of the velocities becomes a normal acceleration
an) applied to the fluid:

n = −∇φ|sns ⇒ (−ω2ū)ns = an = −∇p
ns (2)
ρf

ith ū being the displacement vector and ω is the angular fre-
uency. A mesh of 6000 triangular elements was found to be
ufficient.

s
i
t
m

hamber as a function of distance across this surface (x-axis) and frequency
y-axis).

Damping was applied in the model by the use of complex
tiffness parameters for the solid parts, and a complex speed of
ound for the fluid, the values used are from [3]. The piezoelec-
ric parameters used are from the supplier.

The model has been used to find the frequencies at which
esonance occurs between 1 and 1.7 MHz. The result can be
een in Fig. 2, where the pressure along the lower surface of
he channel is plotted against the distance across the channel (x-
xis) and frequency (y-axis). The plot is a grayscale with black
eing minimum and white maximum. One such resonant fre-
uency is 1.25 MHz, for this frequency the absolute value of the
ressure field and displacement of the solid parts of the system
the deformation is scaled by a factor of 15 000) are shown in
ig. 3a and b respectively. It can be seen that the pressure field

s predominantly 1D in the x-direction.
In addition to providing the resonant frequencies, the data

enerated by the model can also be used to predict the number of
ines of particles that can be expected, and their locations. Such
nowledge is useful for design of these systems, for example
o that outlets and inlets can be positioned in the correctly, this

s especially true for systems of more complicated geometry
han the channel used here, i.e. the next generation of ultrasonic

icromanipulation devices.
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ig. 3. (a) The simulated pressure field plotted using the absolute values, and
b) the vertical displacement of the device when operated at 1.25 MHz.

Yosioka and Kawasima [24] give an expression for the force
cting on a compressible particle in a planar standing wave,
ence in a 1D pressure field. Gor’kov [25] has considered the
orce arising from an arbitrary pressure field. It should be noted
hat in both cases the assumption is made that the particle is
ot near a wall, hence reflection of the scattered field is not
onsidered. This assumption can not be applied to a microflu-
dic system, however it seems reasonable to make the further
ssumption that any discrepancy between the existing theory
nd the microfluidic case is a difference in amplitude of the
orces rather than a major change in the shape of the force field,
ence the lines which are formed will be at locations predictable
y the equations presented by Gor’kov. Even though most res-
nances of the device being examined result in a 1D force field,
he equation of Gor’kov has been used as it applies in all cases.
or’kov states that the time-averaged (indicated throughout by

·〉) force is given by

�F 〉 = −∇〈U〉, (3)

here 〈U〉 is the force potential, which was found to be

U〉 = 2πρfr
3

(
1

3

〈p2〉
ρ2

f c
2
f

f1 − 1

2
〈q2〉f2

)
. (4)

he terms 〈p2〉 and 〈q2〉 are the mean-square-fluctuations of
he pressure and (fluid) particle velocity in the incident wave
t the point where the particle is located, f1 = 1 − ρfc

2
f /(ρsc

2
s )

nd f2 = 2(ρs − ρf)/(2ρs + ρf). The terms ρs and ρf refer to the
ensity and cs and cf to the speed of sound in the objects and
uid, respectively, and r refers to the object radius. For the
alculation of 〈p2〉 and 〈q2〉, the linear equation of the sound
eld can be used; therefore, p = ρf∂φ/∂t and q2 = v2

x + v2
y + v2

z ,
ith vx = −∂φ/∂x, etc. The particles collect at areas of minima

n the force potential. In the case of copolymer spheres (ρs is
050 kg m−3, cs is 3000 m s−1) suspended in water, the 〈p2〉 term
ominates; consequently the particles are arranged at the pres-
ure nodes, and within these nodes at the locations of maximum
q2〉. Similarly in acoustic filters the term “lateral forces” is often
pplied, meaning those forces which act in the nodal plane and
ollect the particles in clumps of areas of the maximum pressure
radient.

In Fig. 3a the absolute value of the pressure is given in order
hat the expected location of the particles is clearly identifiable

s black. It can be seen that in these two dimensions nine vertical
ines of particles are formed, which become vertical planes when
he third dimension is considered. As the upper layer is glass the
ystem can be viewed from above (i.e. negative y-direction),
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hat can be seen are clearly separated lines of particles. This
llows application in which differently handled particles, or per-
aps more interestingly cells, can be held at distinct locations
nd simultaneously viewed. It should be noted that the acoustic
adiation force is not the only force generated by the presence
f an ultrasonic pressure field; there are also secondary forces
hich occur between particles, and drag forces due to acous-

ic streaming. In the experiments performed with this system
owever, the resultant orientation of the particles appears to be
ictated by the acoustic radiation force.

. Design considerations

One of the major differences between the ultrasonic microp-
sitioners described in the literature is the method of actuation.
arious options have been described, including actuation across

he full channel width [21], out of phase actuation applied to two
lectrodes [19], and coupling of a piezoelectric element through
wedge designed such that a planar waves passes across the
idth of the channel [22], in addition actuation along the edge of

he channel is used here. With the development of a model of the
evice described here a comparison of some of these actuation
ethods becomes possible. Fig. 4 shows the absolute pressure at

he lower left corner (the point of minimum x and y which lies in
he chamber) of the fluid chamber as a function of frequency for
our different actuation modes. This point is chosen as a pres-
ure maximum occurs there at resonance (see Fig. 2). In each of
he four examples the same voltage electrical signal is applied
o the active electrode. In Fig. 4a the response for edge actuation
s shown, it can be seen that the most modes result. In Fig. 4b
he electrode is extended across half the width of the channel,
his increases the pressure amplitude in some cases. In Fig. 4c
he electrode stretches across the full width of the channel, again
hose modes which still occur have a larger pressure amplitude,
owever as the system is now symmetrical, those modes which
re asymmetric (1.22, 1.25 and 1.54 MHz) have disappeared. In
ig. 4d, two out of phase signals are applied, this has the effect
f applying a signal over the whole area whilst breaking the
ymmetry of the system, however the only frequency at which
larger pressure is obtained than in the edge actuation case is
.54 MHz. This is different in aim to the method Dougherty et al.
sed, in that they wished to create just one mode which would
esult in a single line along the center of the channel [19]. It
hould be noted that for each of the four cases the voltage used
as the same, however in the case of a device filled with a non-
owing fluid the operational limit is more likely to be the heat
enerated due to the input of electrical power rather than the
aximum voltage which can be applied to the piezoelectric. It

an be seen firstly that different actuation methods give the max-
mum pressure for different resonant frequencies, furthermore
ach of these methods give a range of resonances which arise in
D pressure field (in almost all cases), hence more complicated
ethods of actuation are not required to achieve this aim.

The majority of the resonances which occur between 1.0

nd 1.7 MHz in this device are essentially 1D varying in the x-
irection. An alteration to the geometry of the device will now be
riefly described to demonstrate that this is not always the case.
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Fig. 4. The absolute value of the pressure which occurs at the point at one end
(lowest x) of the lower surface of the fluid chamber plotted against frequency for
different actuation methods. The actuation methods, as depicted, are (a) 700 �m
s
w

I
o
h
a
t
F
c
n
a
a
(
T
1
2
m

F
t
a

t
(
m
c
v
∇
t
w
w
e
t
l
t
d
〈
a
e
t
e
b

c
p
u
fi

4

i
a
o
t
r
m
s
fl
t
t
s
r
T
t
p
particle positioning rather than movement of lines created by
trip electrode, (b) half width electrode, (c) full width electrode, and (d) two half
idth electrodes driven out of phase.

n making this system consideration was given to what the source
f glass ought to be for the upper glass layer, the device presented
ere uses glass cut from a standard slide, the readily avail-
ble alternative was a glass coverslip (approximately 100 �m
hickness). In modeling a device identical to that depicted in
ig. 1 except for the use of a 100 �m glass plate, it became
lear that in the range of investigated frequencies (1.0–1.7 MHz),
o resonance exists in which a 1D field exists. An example of
resonance which occurs, at 1.21 MHz, is shown in Fig. 5a

nd b in which the absolute pressure and vertical displacement
deformation scaling factor is 1000) are shown, respectively.
he maximum vertical displacement which occurs is 88 nm (at

0 V excitation), resulting in a predicted pressure maximum of
.1 MPa. This can be compared with Fig. 3, where the maxi-
um displacement is 3.1 nm and the pressure is 0.93 MPa. If

t
l
i

ig. 5. (a) The simulated pressure field plotted using the absolute values, and (b)
he vertical displacement of a device with a 100 �m glass layer when operated
t 1.21 MHz.

he coupling condition from the solid to the fluid, as given in Eq.
2) is considered, then it can be seen that the vertical displace-
ent is coupled to the fluid as an acceleration. This acceleration

auses a variation in the amplitude in the pressure field in the
ertical direction at (and near) the surface, as can be seen by the
p term. In the case of a pure 1D field the pressure variation in

he vertical direction is zero, hence reference has been made to
hat are essentially 1D fields. This means that when the device
ith a 1 mm glass layer is considered a small variation can be

xpected, whilst for the case of the 100 �m glass layer device
he displacements are so large that the result is that the field is no
onger 1D as can be seen in Fig. 5a. The aim of such microposi-
ioners has been stated as being the separation of particles into
istinct areas all of which are simultaneously viewable, with the
p2〉 term being dominant in Eq. (4), the optimum field for such
system is a 1D field varying in the x-direction, as between

ach observable location a pressure maximum occurs. In fact
he system utilizing a thin glass layer is closer in nature to an
vanescent field device [26] used to move particles lying on or
eing very close to a thin membrane.

What this demonstrates is that a simplified model, such as
onsidering just the fluid vibration, firstly does not accurately
redict the frequencies [23] but secondly does not offer a clear
nderstanding of the modal response of the system, for this a
nite element model is required.

. Modeling and experimental results

An experiment has been performed with the microposition-
ng system shown in Fig. 1 in order to determine the frequencies
t which resonance occurs. This was done by observation of the
rientation of particles suspended within the fluid volume, if
he particles were observed to move to distinct locations then a
esonance was deemed to have been identified. For this experi-
ent the chamber was loaded with 26 �m diameter copolymer

pheres in DI water, in order to achieve this a droplet of the
uid was placed in the well at one end, through capillary forces

he channel fills, afterwards by applying or removing fluid in
he wells a fluid flow can be created. Whilst the frequency was
lowly increased from 1.0 to 1.7 MHz in steps of 0.01 MHz,
esonant frequencies were sought whilst fluid flow was present.
he presence of fluid flow has two advantages, firstly the loca-

ion of the resonances is clearer as for each new frequency the
articles are randomly orientated so it is a matter of looking for
he previous resonant point. Furthermore, it is believed that a
ower amplitude force field is required as the affect of the flow
s that the forces in the x-direction are effectively averaged over
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Table 1
Summary of resonant frequencies which occur between 1 and 1.7 MHz and the
corresponding number of lines of particles

Frequency No. of lines

Simulation Experiment Simulation Experiment

1.05 – 4 –
1.08 1.08 8 8
1.12 1.12 8 8
1.22 1.20 7 9
1.25 1.24 9 9
1.37 – 9 –
1.40 1.42 10 10
1.54 1.52 11 11
1
1
1

z
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n
1
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w
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F
fl

.58 – 10 –

.62 – 10 –

.69 1.69 12 12

, hence lines are more clearly observed. Table 1 shows the sim-
lated and experimentally obtained resonant frequencies and the
umber of lines formed at these frequencies. Once a resonant
requency was observed an attempt was made to form lines with
o fluid flow, this was successful in three cases, those of 1.20,
.24 and 1.52 MHz. It should be noted that this experiment was
erformed without reference to the model results, and hence it
as a matter of looking for resonant frequencies without using

he knowledge, obtained from the model, of where they should
e.

The simulated frequencies listed in Table 1 come from the
esults shown in Figs. 2 and 4a. When compared with the results
f the experimental work it can be seen that four resonances
ave been missed those at 1.05, 1.37, 1.58 and 1.62 MHz, these
requencies correspond to the four cases in which the predicted
ressure is not 1D. This can be seen by examination of Fig. 6
hich shows the absolute value of the pressure field for each
f the resonant frequencies. A further difference, which is less
asily explained, is the number of lines found at 1.22 MHz, this

iffers from that predicted. In the other cases the agreement is
ood, both in terms of the number of lines and in the accuracy
o which the resonant frequency is predicted, which has a max-

ig. 6. The simulated absolute pressure value across the cross-section of the
uid chamber at each pf the identified resonance frequencies.

Fig. 7. Lines of 26 �m diameter copolymer formed in a flowing fluid at each of
t
s

i
r
h
c
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u

he frequencies which were identified through experimental work, the images
how the xz plane.

mum error of 0.02 MHz. Fig. 7 shows particles aligned at the
esonant frequencies, these images are views from above, and
ence are in the xz plane, in these cases a flow is present in the
hamber. Larger images, in the same plane, of the three cases
n which lines were clearly formed in a static fluid volume are

hown in Fig. 8.

A further examination of the accuracy of the model was
ndertaken by measuring the vertical displacement of the
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Fig. 8. Lines of particles formed in a non-flowing fluid v

nderside of the piezoelectric plate. This was done by applying
400 �s long linearly frequency swept signal to the strip elec-

rode. The signal swept from 0.7 to 2.0 MHz, and was enveloped
y a Hanning window, this allowed measurements to be detected
rom 1.0 to 1.7 MHz. The measurement was performed using
Polytec interferometer, the laser head being displaced over
mm in 0.1 mm steps using a positioning stage. Fig. 9 shows the

a) simulated and (b) experimental results, as a plot of distance
cross the plate against frequency, a grayscale is used, with the
aximum amplitude being 8.3 and 9.4 nm in the simulation and

xperimental data, respectively, based on an 18 V input signal,
hich is that used for the particle experiments. The experimen-

al results were analyzed by using a Fourier transform on each
easured signal, and for each frequency plotting the value in

hase with the input voltage. It can be seen that the frequencies
how good agreement. The number of peaks and troughs agree
t most frequencies, an exception is at 1.22 MHz in the simula-
ion were 4 wavelengths can be seen, whilst in the experiment
.5 wavelengths are seen. This is the same frequency at which
he number of lines predicted differed to the number observed

xperimentally. A hypothesis was thus made that the piezoelec-
ric material parameters are not sufficiently accurately known.
his could be expected to lead to a certain degree of inaccuracy,
specially in modes in which large displacements in the piezo-

a
t
1
F

ig. 9. The vertical displacement (grayscale) of the underside of the piezoelectric ele
odeling and (b) experimental work.
e at the three frequencies at which this proved possible.

lectric plate occurs, such as the mode in which the erroneous
esult occurs.

It is important to notice that the peaks shown in these data,
o not necessarily represent the best operational frequencies,
any of the frequencies at which resonances are observed in the

ressure field analysis show little displacement on the under-
ide of the piezoplate, for example at 1.25 MHz as shown in
ig. 3.

An efficient method of establishing the resonant frequencies
f an acoustic filter is the examination of the electrical admit-
ance of the system [3]. This method has been applied to the
icropositioning device and compared to that predicted by the
nite element model. For the simulated results Femlab allows the
alculation of the current across the strip electrode for a given
oltage, hence the admittance can be found, this is shown in
ig. 10a. A current probe (Le Croy AP015) was used in conjunc-

ion with a Le Croy 9344 CM oscilloscope (Chestnut Ridge, NY)
o find the current applied to the active electrode. The experiment
as performed using a linearly frequency swept excitation sig-
al. The frequency range was 0.5–3.5 MHz in a time of 400 �s,

nd the signal was enveloped by a Hanning window, this allowed
he calculation of the admittance across a frequency range from
.0 to 3.0 MHz. The calculation was performed by taking the
ourier transform of the current and voltage signal, and then

ment, plotted against distance (x-direction) and frequency, obtained through (a)
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appears to be limited by the accuracy of the parameters for this
ig. 10. The electrical admittance of the system over a range of 1.0–3.0 MHz,
btained using (a) simulation and (b) experimentation.

ividing the first by the latter for each frequency of interest.
ig. 10b shows the real value of the admittance, resulting in the
hase being the same as that for the simulated data. A compar-
son of the two sets of data shows the presence of eight major
eaks in the admittance, the agreement of the location of these
eaks worsens considerably with increasing frequency. It was
elieved that this is a demonstration of poorly defined piezo-
lectric parameters, and this will be confirmed below. Within
he frequency range of 1.0–1.7 MHz, it can be seen that the
ocation of the major peaks is accurate. What are missing in the
xperimental work are the smaller peaks shown in the simulation
ata. However these smaller peaks correspond to resonances in
hich large pressure fields are predicted, an as illustration the
eak which occurs at 1.25 MHz is circled in the simulation data.
n the case of an acoustic filter, devices in which the nodal pres-
ure planes are parallel to the actuating piezoelectric plate, the
ystem can be treated as 1D. If a large pressure field occurs then
arge displacements in the piezoelectric plate can be expected
nd hence admittance values change. However, in the case of a
evice such as described in this work the interrelationship is not
s clear. Large amplitude pressure fields can occur at frequen-
ies at which relatively low displacements, or thickness changes
n the piezoelectric plate occurs, 1.25 MHz is an example of this

also see Fig. 9), it is these frequencies which have a very small
nfluence on the admittance. It can therefore be seen that a finite
lement model provides a useful tool in the location of resonant
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requencies, as well as aiding the understanding of the resultant
odes.
The hypothesis was put forward in relation to the results of

odeling and measuring the displacement of the underside of
he piezoelectric plate that the inaccuracies which occur could be
aused due to the piezoelectric parameters used. This point was
gain raised in relation to the electrical properties of the device,
he measured values of which can be seen to clearly diverge
rom theory with increasing frequency. In order to investigate
he accuracy of the piezoelectric parameters dispersion curves
ere measured, this seemed suitable as the device couples a
ending plate to the fluid, albeit causing an asymmetric load on
he plate itself. A piezoelectric plate measuring 48 mm × 10 mm,
ith a thickness of 0.5 mm, was cut. A strip electrode measuring
.7 mm was cut using a wafer saw at one end (across the 10 mm
idth). The resultant plate was operated in air by an excitation

ignal applied to this strip electrode. A linearly swept driving
ignal was used, sweeping from 0.3 to 8 MHz (although only
ata from 1 to 3 MHz is used here), over a period of 400 �s, the
isplacement of the surface of the piezoelectric plate was mea-
ured using a Polytec interferometer at 1251 points, separated
y 40 �m, the digitized signal of 25 000 points separated by
0 ns was recorded by an oscilloscope and logged by computer.

2D FFT was performed on the data, firstly in the temporal
omain then the spatial domain, such that data about the wave
umber against frequency was found, this data was re-sampled
uch that the phase velocity against frequency could be plotted
s shown in Fig. 11b. This re-sampling requires the high tem-
oral and spatial resolution used in the measurement. At lower
requencies this re-sampling has the affect of smearing the fairly
oisy data in the velocity direction, hence the vertical lines in
he plot. This can be compared with a 2D model made of the
late (in the cross-section measuring 50 mm × 0.5 mm), a mesh
f 4040 elements was used, such that 1000 elements were along
he upper surface, an analysis was made at frequencies from 1 to
MHz in steps of 0.1 MHz. For each frequency the wave num-
er was calculate using a Fourier transform. The data is plotted
n Fig. 11a. As a relatively low number of frequencies are used,
hen the resultant data is plotted it appears smeared in the fre-
uency direction. What can be seen is that the curves disagree
airly strongly at higher frequencies, meaning that certain, if not
ll, values in the stiffness matrix are inaccurately defined. This
s believed to be an important limitation to the accuracy of the

anipulator model. In the case of this more complicated sys-
em in which the piezoelectric plate is coupled to a silicon layer
nd in turn a fluid, it is not surprising that a mode involving
arge displacements in the piezoelectric, even at a relatively low
requency (for example 1.22 MHz), is inaccurately modeled.

The resonant mode within the fluid is influenced by the dis-
lacement of the solid bodies surrounding it, as shown in the
ase of the cover glass device, and also in a comparison of a sim-
le fluid resonant model and the actual model results obtained
ere. Hence as the displacement data for the piezoelectric plate
aterial, this would also explain why the resonant frequencies
t which the maximum pressures occur are not necessarily the
requencies at which the device works best. Another factor is
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ig. 11. The dispersion curve for a 0.5 mm thick piezoelectric plate as obtained
a) theoretically using the manufactures parameters and (b) experimentally.

he damping in the fluid (containing suspended particles) layer,
he value used is that found empirically for an acoustic filter by
röschl [3]. The model is thus limited in its’ ability to predict the
est resonant condition and one error has been observed in the
redicted mode shapes, both of which are believed to be due to
oorly defined input parameters. The models’ usefulness is in the
nderstanding of the influence of device geometry and demon-
trating the importance of considering the fluid–structure inter-
ction, investigating different actuation methods, the prediction
f most resonant modes and frequencies, and for assessing the
sefulness of approaches such as electrical and displacement
easurements for finding resonant conditions.

. Conclusions

The micropositioning system presented here has been mod-
led using a finite element approach, this has been seen to give
n accurate prediction of the location of the resonances, and by
rst identifying which of the resultant modes are essentially 1D
comparison with experimental results is good in six out of
he seven cases. The absolute importance of such a model has
een demonstrated by trying to establish the resonant frequen-
ies by examination of the displacement of the piezoelectric and
econdly the electrical properties, neither of which give all the

[

[

tors B 121 (2007) 452–461

requencies. Furthermore the actuation method has been exam-
ned, and the model shows which type of actuation is required
or best generation of each mode, and the interaction between
he plate and fluid has been briefly examined by changing one
f the geometrical parameters. The amplitude of the pressure
eld it not so well predicted, with the best operating frequency,
.25 MHz, having the forth largest amplitude. It was suspected
hat the inaccuracy stems from the piezoelectric parameters,
nd a comparison between the modeled dispersion curves using
hose parameters and experimental data support that assertion.
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[4] M. Gröschl, W. Burger, B. Handl, Ultrasonic separation of suspended par-
ticles. Part III. Application in biotechnology, Acustica 84 (1998) 815–822.

[5] J.J. Hawkes, W.T. Coakley, A continuous flow ultrasonic cell-filtration
method, Enzyme Microb. Technol. 19 (1996) 57–62.

[6] M. Hill, Y. Shen, J.J. Hawkes, Modeling of layered resonators for ultrasonic
separation, Ultrasonics 40 (2002) 385–392.

[7] H. Nowotny, E. Benes, General one-dimensional treatment of the layered
piezoelectric resonator with two electrodes, J. Acoust. Soc. Am. 82 (1987)
513–521.

[8] J.R. Wu, Acoustical tweezers, J. Acoust. Soc. Am. 89 (1991) 2140–2143.
[9] T. Kozuka, T. Tuziuti, H. Mitome, T. Fukuda, Micromanipulation using a

focused ultrasonic standing wave field, electronics and communications in
Japan, part Iii, Fund. Electr. Sci. 83 (2000) 53–60.

10] H. Mitome, T. Kozuka, T. Tuziuti, Non-contact micromanipulation method
and apparatus, US Patent 6,055,859 (May 2, 2000).

11] S.I. Umemura, M. Kamahori, K Sasaki, Particle handling apparatus for han-
dling particles in fluid by acoustic radiation pressure, US Patent 6,216,538
(April 17, 2001).

12] M.B. Barmatz, J.L. Allen, Single mode levitation and translation, US Patent
4,736,815 (April 18, 1988).

13] A. Haake, J. Dual, Contactless micromanipulation of small particles by
an ultrasound field excited by a vibrating body, J. Acoust. Soc. Am. 117
(2005) 2752–2760.

14] A. Haake, A. Neild, G. Radziwill, J. Dual, Positioning, displacement, and
localization of cells using ultrasonic forces, Biotechnol. Bioeng. 92 (2005)
8–14.

15] A. Haake, A. Neild, D.-H. Kim, J.-E. Ihm, Y. Sun, J. Dual, B.-K. Ju, Manip-
ulation of cells using an ultrasonic pressure field, Ultrasound Med. Biol.
31 (2005) 857–864.

16] N.R. Harris, M. Hill, S. Beeby, Y. Shen, N.M. White, J.J. Hawkes, W.T.
Coakley, A silicon microfluidic ultrasonic separator, Sens. Actuators B:
Chem. 95 (2003) 425–434.

17] N. Harris, M. Hill, Y. Shen, R.J. Townsend, S. Beeby, N.M. White, A dual
frequency, ultrasonic, microengineered particle manipulator, Ultrasonics
42 (2004) 139–144.
18] T. Lilliehorn, M. Nilsson, U. Simu, S. Johansson, M. Almqvist, J. Nilsson,
T. Laurell, Dynamic arraying of microbeads for bioassays in microfluidic
channels, Sens. Actuators B: Chem. 106 (2005) 851–858.

19] G.M. Dougherty, A.P. Pisano, Ultrasonic particle manipulation in
microchannels using phased co-planar transducers, in: Proceedings of



Actua

[

[

[

[

[

[

[

B

A
2
i

r
t
m

S
n
o
p
u
L
a
d

J
H
B
e
P
a
p
d
a
o

A. Neild et al. / Sensors and

the 12th International Conference on Solid State Sensors, Actuators and
Microsystems, vol. 670, Boston, 2003, p. 373.

20] A. Neild, S. Oberti, F. Beyeler, J. Dual, B. Nelson, A micro-particle han-
dling system combining an ultrasonic manipulator and microgripper, J.
Micromech. Microeng., submitted for publication.

21] F. Petersson, A. Nilsson, C. Holm, H. Jönsson, T. Laurell, Continuous
separation of lipid particles from erythrocytes by means of laminar flow
and acoustic standing wave forces, Lab-on-a-Chip 5 (2005) 20–22.

22] M. Wiklund, C. Günther, R. Lemor, M. Jäger, G. Fuhr, H.M. Hertz, Ultra-
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Chapter 4

Ultrasound acoustofluidics

Acoustofluidics refers to the application of acoustic pressure fields in microfluidic systems.
As the speed of sound in water at room temperature is ca ≈ 1.5×103 m/s, the application
of ultrasound frequencies f & 1.5 MHz will lead to wavelengths λ . 1 mm, which will fit
into the submillimeter-sized channels and cavities in microfluidic systems. The ultrasound
is typically generated by on-chip, ac-biased piezo-ceramic transducer.

When the acoustic waves are propagating in liquids, the associated fast-moving and
rapidly oscillating density, pressure and velocity fields can impart a slow non-oscillating
velocity component to the liquid or to small particles suspended in the liquid. In microflu-
idic systems these normally quite minute effects can be of significance. Interestingly, the
origin of these effects can be traced back to two hydrodynamic properties largely ignored
in the preceding chapters, namely the non-linearity of the Navier–Stokes equation and the
small but non-zero compressibility of ordinary liquids.

The linear wave equation for acoustics is only an approximate equation derived by com-
bining the thermodynamic equation of state expressing pressure in terms of density, the
kinematic continuity equation (1.24), and the dynamic Navier–Stokes equation (1.37b).
Discarding all external fields such as gravitation and electromagnetism, as well as consid-
ering only the isothermal case, these three equations form the starting point for the theory
of acoustics or sound,

p = p(ρ), (4.1a)

∂tρ = −∇·(ρv), (4.1b)

ρ∂tv = −∇p− ρ(v·∇)v + η∇2v + βη ∇(∇·v). (4.1c)

This set of coupled non-linear, partial differential equations is notoriously difficult to solve
numerically. However, approximate solutions can be found by perturbation theory.

4.1 The first-order acoustic wave equation

Consider a quiescent liquid, which before the presence of an acoustic wave has constant
density ρ0 and pressure p0. Then let an acoustic wave be the origin to tiny perturbations
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in the density, the density and the velocity field,

ρ = ρ0 + ρ1, p = p0 + c2aρ1, and v = v1. (4.2)

Here, in the (isentropic) expansion of the equation of state p(ρ) = ρ0 + (∂p/∂ρ)sρ1, the
derivative has the dimension of a velocity squared, which has been written as c2a . Below
we shall see that ca can be identified with the (isentropic) speed of sound in the liquid.
Insertion of these expansions into Eqs. (4.1b) and (4.1c), and neglecting products of first-
order terms, lead to the first-order continuity and Navier–Stokes equation,

∂tρ1 = −ρ0∇·v1, (4.3a)

ρ0∂tv1 = −c2a∇ρ1 + η∇2v1 + βη ∇(∇·v1). (4.3b)

A single equation for ρ1 is obtained by taking the time derivative of Eq. (4.3a) and insertion
of Eq. (4.3b) in the resulting expression,

∂ 2
t ρ1 = −∇·(ρ0∂tv) = c2a∇2ρ1 − (1 + β)η∇2

(∇·v1

)
= c2a

[
1 +

η

ρ0c
2
a

∂t

]
∇2ρ1. (4.4)

To make further analytical progress, we assume harmonic time dependence of all fields,

ρ1(r, t) = ρ1(r) e
−iωt, p1(r, t) = c2aρ1(r) e

−iωt, and v1(r, t) = v1(r) e
−iωt, (4.5)

where ω = 2π f is the angular frequency and f the frequency of the acoustic field. The
harmonic time dependence is expressed by the complex phase e−iωt to ease the mathemat-
ical treatment. The physical fields are obtained simply by taking the real part. With this,
each time derivative ∂t in Eq. (4.4) gives a factor −iω, and the equation becomes

∇2p1 = −k2 p1, (4.6a)

k = (1 + iγ)k0 = (1 + iγ)
ω

ca
, (4.6b)

γ =
ηω

2ρ0c
2
a

≈ 10−6, (4.6c)

where we have used p1 = c2aρ1 as well as introduced the wavenumber k0, the damped
wavenumber k, and the viscous damping factor γ ≈ 10−6 (for water at f = 1 MHz).
Eq. (4.6a) is a damped Helmholtz equation for a wave with damped wavenumber k and
angular frequency ω. As γ ¿ 1 we can neglect the viscosity in the bulk part of the acoustic
wave, and going back to the explicitly time-dependent Eq. (4.4) we get

∇2p1 =
1

c2a
∂ 2
t p1, for η = 0. (4.7)

The solutions in 1D to this standard wave equation have the form p1(x, t) = p1(x ± cat)
showing that ca indeed is the speed of sound. In the inviscid limit it furthermore follows
by inserting Eq. (4.2) into Eq. (4.3b) that v1 = v(r) e−iωt is a gradient of a potential φ1,

v1 = −i
1

ρ0ω
∇p1 = ∇φ1, for η = 0, (4.8a)

φ1 =
−i

ρ0ω
p1, for η = 0. (4.8b)



4.2. ACOUSTIC RESONANCES, BASIC CONCEPTS FOR VISCOUS LIQUIDS 33

Table 4.1: Acoustic parameters for modeling of inviscid liquids and elastic solids.
material Speed of sound density Young’s modulus Poisson’s ratio

water cwa 1483 m/s ρwa 998 kg/m3 − −
silicon csi 8490 m/s ρsi 2331 kg/m3 Esi 164 GPa ν̄si 0.10
pyrex cpy 5647 m/s ρpy 2230 kg/m3 Epy 64 GPa ν̄py 0.20

polystyrene cps 1700 m/s ρps 1050 kg/m3 − −

Thus both the density ρ1 and velocity v1 can be calculated from the pressure p1, which
itself is found by the Helmholtz equation.

4.2 Acoustic resonances, basic concepts for viscous liquids

When operating an acoustofluidic device, it is often advantageous to run it at acoustic res-
onances for two reasons: the resonance patterns are usually both stable and reproducible,
and at resonance a maximum of power is delivered from the transducer to where it is
needed in the system.

To illustrate the fundamental properties of acoustic resonances, we study the simple
1D setup sketched in Fig. 4.1(a). Two planar walls are placed parallel to the yz-plane at
x = −L and x = L, respectively, and the gap is filled with water. The walls are forced to
oscillate in anti-phase at a frequency f ≈ 1 MHz and with an amplitude ` ≈ 1 nm. As a
simplification we neglect the actual tiny displacement of the walls and instead model the
oscillation by the velocity boundary condition sketched in Fig. 4.1(a),

v1(−L, t) = −ω` e−iωt, v1(+L, t) = +ω` e−iωt. (4.9)

Starting from rest the resonance builds up until the incoming power equals the heat
dissipation due to viscosity. The standing 1D wave v1 = f(x)e−iωt ex has ∇×v1 = 0, so
v1 = ∇φ1 and ∂jvi = ∂ivj . To find the viscid velocity potential φ1, we note that ∂j∂jvi =

∂j∂ivj = ∂i∂jvj , i.e. ∇2v1 = ∇(∇·v1), and from Eq. (4.3a) we have ∇·v1 = iωp1/(ρ0c
2
a).

Inserting these two expressions together with v1 = ∇φ into Eq. (4.3b), we find,

φ1(r, t) =
−i

ωρ0(1 + iγ)2
p1(r, t), for ∇× v1 = 0. (4.10)

Because φ1 ∝ p1 the wave equation (4.6a) also holds for φ1, and we can therefore write
the solution for φ1 as a superposition of a pair of counter-propagating plane waves with a
complex wave number k = k0(1+iγ) and unknown coefficients φ+ and φ− to be determined,

φ1(x, t) =
[
φ+e

ikx + φ−e
−ikx

]
e−iωt. (4.11)

The corresponding first-order velocity is

v1(x, t) = ∂xφ1(x, t) = ik
[
φ+e

ikx − φ+e
−ikx

]
e−iωt. (4.12)



34 CHAPTER 4. ULTRASOUND ACOUSTOFLUIDICS

(a) −L L0

x
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Figure 4.1: (a) A liquid slab (dark gray) between two parallel planar walls (thick lines)
that oscillates harmonically in counter-phase (double arrows). As the amplitude is minute,
` ¿ L, the wall positions are considered fixed, while the first-order velocity v1(t) at
the walls is changing harmonically, v1(t) = ±ω` e−iωt. (b) Sketch of the two terms in
the resonant velocity field v1 Eq. (4.14a). The small component (full line) proportional
to (x/L) cos(πx/L) obeys the oscillatory boundary condition with amplitude ±ω`. The
large resonant component (dashed line) proportional to (1/πγ) sin(πx/L) is an eigenmode
obeying the hard-wall condition with amplitude zero.

The antisymmetric boundary condition on v1 in Eq. (4.9) combined with Eq. (4.12) leads
to φ+ = φ−, as well as an expression for the coefficients,

φ+ = φ− =
−ω`

2k sin(kL)
. (4.13)

Consequently, we can obtain the following expression for v1,

v1(x, t) = ω`
sin(kx)

sin(kL)
e−iωt ≈ ω`

sin(k0x) + iγk0x cos(k0x)

sin(k0L) + iγk0L cos(k0L)
e−iωt, (4.14a)

where we have used γk0L ¿ 1 to make Taylor expansions in kL around k0L. We note
that when k0L differs sufficiently from integer multiples of π, i.e. γ ¿ |k0L−nπ|, then the
imaginary parts of the denominators can be neglected. This corresponds to off-resonance
characterized by a small magnitude of the velocity,

|v1(x, t)| ≈ ω` ≈ 10−6ca, (off resonance), (4.15a)

where the value is calculated by assuming ω ≈ 107 rad/s, ` ≈ 0.1 nm and ca ≈ 103 m/s.
More interesting perhaps is the acoustic resonances, where the acoustic field acquires

particularly large amplitudes and thus stores a large amount of energy, see Fig. 4.1(b).
Theoretically, the resonances are identified by the minima in the denominators of the fields
in Eq. (4.14), i.e. for sin(k0L) = 0 or k0L = nπ, n = 1, 2, 3, . . .,

k0 = kn ≡ n
π

L
, n = 1, 2, 3, . . . (resonance condition). (4.16)

In practice, the resonance is achieved by tuning the frequency ω to ωn given by

ω = ωn ≡ cakn = n
πca
L

, n = 1, 2, 3, . . . (resonance frequency). (4.17)
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At the nth resonance sin(knL) = 0 and cos(knL) = einπ, so the acoustic fields become

φ1(x, t) ≈ ca`

[
i

nπγ
cos

(
nπ

x

L

)
+

x

L
sin

(
nπ

x

L

)]
e−i(ωnt−nπ), (4.18a)

v1(x, t) ≈ ω`

[ −i

nπγ
sin

(
nπ

x

L

)
+

x

L
cos

(
nπ

x

L

)]
e−i(ωnt−nπ). (4.18b)

From these expressions it follows that each of the fields acquires a resonant component
with an amplitude that is a factor of 1/(nπγ) ≈ (3/n)× 104 larger than the non-resonant
component, e.g.

|v1(x, t)| ≈
1

nπγ

ωn`

ca
ca ≈

1

n
10−2 ca, (at the nth resonance). (4.19)

In spite of the huge multiplication factor, 1/(πγ) ≈ 104, the velocity remains small enough,
v1 ¿ ca to ensure the validity of the perturbation approach.

From (4.18b) we see that the term actually obeying the velocity boundary condition
v1(±L) = ±ω` is 104 times smaller than the other term, which obeys the hard-wall con-
dition v1(±L, t) = 0 and thus in fact is an eigenmode of the system. Thus, when coupling
into a system with a frequency near an eigenmode frequency, the corresponding eigenmode
gets excited with huge amplitude approximately a factor 1/γ larger than the coupling am-
plitude, independent of the actual boundary condition, see Fig. 4.1(b).

Finally, as the total energy Eac for an harmonically oscillating system is twice the
kinetic energy, Eq. (4.14a) implies Eac =

1
2L

∫ L
−L dx 1

2ρ0|v1(x)|2 = 1
4ρ0ω

2`2/| sin(kL)|2. By
Taylor expansion in kL = L

ca
ω around the nth resonance at nπ we find a Lorentzian peak,

Eac(ω) =
1
4ρ0ω

2`2∣∣∣ Lca (ω − ωn)− iγnπ
∣∣∣
2 =

ρ0ω
2`2

4n2π2

ω2
n

(ω − ωn)2 + γ2ω2
n

, for ω ≈ ωn. (4.20)

4.3 Eigenmodes, inviscid liquids and shear-free solids

The above result indicates that we can gain insight in the nature of acoustic resonances
in a driven systems by analyzing the eigenmodes pn = pn(r) e

−iωnt of the equivalent iso-
lated inviscid system. We simplify our treatment further by assuming that the solids that
surrounds our water-filled microchannels are shear-free and thus characterized only by a
pressure field governed by the Helmholtz equation (4.6a) with η = 0. We use three bound-
ary conditions in the following, (i) the hard-wall condition, where the normal velocity
is zero and thus by Eq. (4.8a) also the normal gradient of the pressure is zero, (ii) the
soft-wall condition, where the pressure is zero, and (ii) the continuity condition for both
pressure and velocity at the interface between two materials (a) and (b). We thus have

p1 = 0, soft-wall boundary condition, (4.21a)

n ·∇p1 = 0, hard-wall boundary condition, (4.21b)

1

ρ
(a)
1

n ·∇p
(a)
1 =

1

ρ
(b)
1

n ·∇p
(b)
1 , and p

(a)
1 = p

(b)
1 , continuity boundary condition. (4.21c)
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(a) �1,1,1 = 5.33 MHz

soft

(b) �3,1,1 = 5.43 MHz

soft

(c) �1,2,1 = 6.31 MHz

soft

(f) �1,1,1 = 5.33 MHz

hard

(e) �2,1,0 = 2.09 MHz

hard

(d) �0,1,0 = 1.95 MHz
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Figure 4.2: Color slice plots (red positive, green zero, blue negative) in the inviscid limit of
some eigenmodes of the pressure field p1 in a rectangular, single, water-filled microchannel
of length ` = 2 mm, width w = 0.38 mm, and height h = 0.15 mm. (a) - (c) Soft-wall
boundary conditions p1 = 0 at the surface, i.e. a zero-density wall surrounds the channel.
(d) - (f) Hard-wall boundary condition n·∇p1 = 0, i.e. the surrounding wall is of infinite
density. Reproduced from the DTU master thesis by Rune Barnkob [Barnkob 2009].

For a rectangular water-filled channel placed along the coordinate axes with its opposite
corners at (0, 0, 0) and (`, w, h) surrounded by an ideal shear-free solid having ρ = ∞ or
ρ = 0, the following eigenmodes are found as can easily be verified by direct substitution,

p1(x, y, z) = pa sin(kxx) sin(kyy) sin(kzz), with kj = nj
π

Lj
, (soft wall), (4.22a)

p1(x, y, z) = pa cos(kxx) cos(kyy) cos(kzz), with kj = nj
π

Lj
, (hard wall), (4.22b)

where pa is the pressure amplitude, where (Lx, Ly, Lz) = (`, w, h), and where nj =
(0, )1, 2, 3, . . . is the number of half wavelengths (nj > 0 for the sine-waves). The cor-
responding three-index resonance frequencies fnx,ny,nz = ωnx,ny,nz/(2π) are

fnx,ny ,nz =
cwa
2

√
n2
x

`2
+

n2
y

w2
+

n2
z

h2
, with nx, ny, nz = (0, )1, 2, 3, 4, . . . . (4.23)

Examples of these analytically determined eigenmodes are shown in Fig. 4.2. Note the low
frequency of (d) and (e) having nz = 0 along the smallest dimension in contrast to nz = 1
of the other four eigenmodes. In (f) one half-length is squeezed in along the z-direction
(nz = 1) and the frequency increases significantly. In fact, as (a) and (f) have the same
indices they also have the same frequency, namely f1,1,1 despite their different boundary
conditions. It turns out that the anti-symmetric resonance (d) having a perfect nodal
plane in the vertical center plane is the ideal configuration for acoustophoretic separation.
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Figure 4.3: COMSOL simulation of the lowest antisymmetric eigenmode for the L×W ×
(hsi+hpy) rectangular pyrex/Si chip denoted α=1 in Fig. 6.1, with a narrow `× w × hwa
rectangular water-filled microchannel. (a) The chip geometry. (b) Color slice plot of the
pressure (red positive, green zero) in a 3D L/2×W/2×(hsi+hpy) view. (c) End view of half
the chip W/2× (hsi+hpy) in the yz-plane. Left edge is the antisymmetry plane. (d) Top
view of one quarter of the chip L/2×W/2 in the xy-plane. Top edge is the antisymmetry
plane. Adapted from the DTU master thesis by Rune Barnkob [Barnkob 2009].

To make the description of the acoustic eigenmodes more realistic, we can include the
finite density and compressibility (speed of sound) of the surrounding shear-free wall, see
Table 4.1 for a list of some relevant acoustic material parameters. Only a few highly sym-
metric geometries, like the above one, can be solved analytically, and one must therefore
solve the given problem numerically. As an example we show in Fig. 4.3 some results
from a COMSOL simulation of the pressure field in the piezo-activated pyrex/silicon chip
presented in Fig. 6.1, which containing a water-filled microchannel.

In the model we solve the Helmholtz equation ∇2pi = −(ω2/c2a) pi for the silicon,
pyrex and water domain i = si, py, and wa, respectively. The boundary condition for
the internal water/silicon, water/pyrex and pyrex/silicon interfaces are all the continuity
condition (4.21c). We use the soft-wall condition (4.21a) for all five outer pyrex surfaces
and the four vertical outer silicon surfaces that faces the air, while the bottom silicon
surface facing the piezo transducer is modeled using the hard-wall condition (4.21b).

The eigenmode solution shown in Fig. 4.3 is the one that resembles the ideal nodal
plane configuration Fig. 4.2(d) the most. The eigenmode does have a vertical nodal plane
along the x direction, as can seen by the green color along the respective antisymmetry
planes in Fig. 4.3(b)-(d). But we also note deviations from the ideal configuration: there
are pressure gradients both vertically along the z axis, see panel (c), and horizontally
along the x axis, see panel (d). Such gradients may lead to less than optimal operation of
the acoustophoretic devices. More seriously, however, is the fact that the eigenfrequency
comes out to be 2.45 MHz, which is about 20% larger than the experimentally observed
resonance frequencies around 2 MHz, see Fig. 6.3(b). While the former deviations is
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something that must be taken into account when designing acoustofluidic devices, the
latter deviation calls for an improvement of the theoretical model.

4.4 Acoustic resonances, elastic walls

The next step up in the theoretical modeling of ultrasound waves in lab-on-a-chip systems
is to take into account the shear-stresses in the elastic walls surrounding the water-filled
microchannels. This can be handled by employing the classical theory of elastic solids
[Landau 1986]. The basic entity in this theory is the displacement u(r, t) of a solid element
away from its equilibrium position r to its new temporary position r̂(r, t) = r + u(r, t).
As in the previous part of the lecture notes, we assume a steady harmonic oscillation of
the form u(r, t) = u(r) exp(−iωt). The wave equation for elastic waves is derived in a
similar way as the equation of motion (1.36) for liquids through. It is Newton’s second
law expressed as a balance between the divergence of the stress tensor σik and the inertia
due to the density and acceleration of the solid, ρ∂2

t u = −ρω2u, and it takes the forms

ρ∂2
t ui = ∂kσik, general time dependence, (4.24a)

∂kσik + ρω2ui = 0, steady harmonic time dependence. (4.24b)

For small-amplitude oscillations, the stress tensor is related linearly to the strain tensor
ulm = 1

2

(
∂lum + ∂mul

)
through the elastic tensor λiklm of rank four by Hooke’s law,

σik =
1

2
λiklm

(
∂lum + ∂mul

)
. (4.25)

For an isotropic solid the elastic tensor is fully characterized by two parameters, Young’s
modulus E and Poisson’s ratio ν̄ and the explicit form of the stress tensor becomes

σik =
[1
2

(
∂iuk + ∂kui

)
+

ν̄

1− 2ν̄
(∂juj) δik

] E

1 + ν̄
, isotropic solid. (4.26)

In an infinite solid it is easy to identify two types of elastic waves: the longitudinal pressure
waves and the transverse shear waves found be taking the divergence and the rotation of
Eq. (4.24a), respectively. However, in a finite solid these two types of elastic waves mix
due to scattering at the boundaries. This mixing of the purely longitudinal and purely
transverse waves complicates the theory of elastic waves in solids.

The boundary conditions resemble those of inviscid fluids, Eq. (4.21). For a free surface
and for one subject to an external force f per area, e.g. from a piezo transducer, we have

nkσik = 0, free surface, (4.27a)

nkσik = fi, forced surface, (4.27b)

ui =
ai
ω2

, accelerated surface. (4.27c)

For the interface between a solid and an inviscid fluid, with the normal n and tangent t,
three conditions must be fulfilled: (i) the normal stress component of the solid must equal
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the acoustic pressure in the fluid, (ii) the tangential stress component of the solid must
be zero as an inviscid fluid cannot sustain a shear stress, and (iii) the normal component
of the accelerations of the solid and of the fluid must be identical. Therefore

ninkσik = p, inviscid fluid/solid interface (normal stress), (4.28a)

tinkσik = 0, inviscid fluid/solid interface (tangential stress), (4.28b)

ω2niui =
1

ρwa
ni∂ip inviscid fluid/solid interface (normal acceleration). (4.28c)

Here ρwa and p is the density and the pressure of the inviscid fluid, respectively.

We present no analytical solutions of the coupled fluid/elastic solid equations. Instead
we outline how to formulate the equations in the so-called weak form suitable for imple-
mentation in the finite element method (FEM) used by COMSOL. In FEM analysis the
governing equation is not satisfied in each and every point of the computational domain
Ω1. To discretize the solution of the elastic wave equation (4.24b), a number of vector
and scalar test functions ũi and p̃ are introduced, each being different from zero only in a
tiny part of domain, but together covering it all. A so-called weak solution of the problem
only satisfy that the following integrals are zero for all test functions,

∫

Ω1

dr ũi

[
∂kσik + ρω2ui

]
= 0, (4.29)

which upon partial integration becomes

∫

∂Ω1

da ũinkσik +

∫

Ω1

dr
[
∂kũi(−σik) + ũi(ρω

2ui)
]
= 0, (4.30)

where n is the outward-pointing surface normal of ∂Ω. Likewise, the inviscid Helmholtz
equation (4.6a) with k = ω/cwa for the acoustic pressure p in the water-filled domain Ω2

is written in weak form after introducing the test functions p̃,

∫

∂Ω2

da p̃nk∂kp+

∫

Ω2

dr
[
∂kp̃(−∂kp) + p̃

ω2

c2wa
p
]
= 0. (4.31)

To implement the boundary conditions in weak form we insert Eqs. (4.28a) and (4.28b)
into the boundary part of Eq. (4.30) using ũi = (nj ũj)ni+(tj ũj)ti, and Eq. (4.28c) into the
boundary part of Eq. (4.31). We choose the normal vector n at the solid/liquid interface to
point from the solid to the liquid, thus it appears as −n in the p̃-equation. The resulting
governing equations in weak form become

∫

∂Ω1

da ũjnjp+

∫

Ω2

dr
[
∂kũi(−σik) + ũi(ρω

2ui)
]
= 0, (4.32a)

∫

∂Ω1

da p̃ρwaω
2(−nkuk) +

∫

Ω2

dr
[
∂kp̃(−∂kp) + p̃

ω2

c2wa
p
]
= 0. (4.32b)
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Figure 4.4: COMSOL simulation of the glass/silicon chip of Fig. 4.3 using the inviscid
liquid/elastic wall model. (a) A log-linear plot of the acoustic energy Eac as a function of
frequency f for odd-odd symmetric (upper) and asymmetric (lower) actuation. (b) Color
plot of the pressure p in the center plane of the water-filled microchannel, 11 arrow slice
plots of the displacement field u, and gray scale plot of the actuation at the bottom plane
of the silicon chip here with odd-odd symmetry. (c) as panel (b) but with asymmetric
actuation symmetry. (d) as panel (b) but with even-even actuation symmetry.

Simulations were performed in COMSOL using different piezo actuation modes, each
with the same frequency ω but with different spatial symmetry, implemented using the
accelerated surface condition (4.27c) with the following functions,

u(b)z (x, y, 0) ∝ 1

ω2
sin(2π x

L) sin(2π y
W ), even-even symmetric, (4.33a)

u(c)z (x, y, 0) ∝ 1

ω2
( xL)

2( y
W )2 (1− x

L)(1− y
W ), asymmetric, (4.33b)

u(d)z (x, y, 0) ∝ 1

ω2
sin(π x

L) sin(π y
W ), even-even symmetric. (4.33c)

To allow for dissipation of the energy pumped into the system by the acceleration
condition, an artificial bulk dissipation is included by introducing a small imaginary part
in the frequency given by the viscous damping factor, ω → (1 + iγ)ω. The geometry of
the system is chosen to be that of the silicon/glass α = 1 chip of Figs. 4.3 and 6.1, except
that due to computer memory restrictions L was changed from 50 mm to 20 mm.

With the elastic solid model, we are now able to predict the existence of anti-symmetric
resonances around 2 MHz in agreement with experimental observations. This is a clear
improvement of the results obtained by the shear-free model in Fig. 4.3. Furthermore,
we find Lorentzian peaks in agreement with Eq. (4.20) with spacings between the peaks
of the order of 10-20 kHz. Finally, the elastic solid model does predict the existence of
vertical nodal planes, but we see that the resulting pressure patterns deviate from the
ideal straight pattern seen in Fig. 4.2(d).



Chapter 5

Acoustic radiation force

If an ultrasound field is imposed on a liquid (subscript ”a” or ”0”) containing a suspension
of particles (subscript ”p”), the latter will be affected by the so-called acoustic radiation
force arising from the scattering of the acoustic waves on the particle. The force depends
on the density ratio ρP/ρ0 and on the speed of sound ratio cp/ca. The motion of the
particle resulting from the acoustic radiation force is called acoustophoresis.

The studies of acoustic radiation forces on suspended particles have a long history.
The analysis of incompressible particles in acoustic fields dates back to the work in 1934
by King [King 1934], while the forces on compressible particles in plane acoustic waves was
calculated in 1955 by Yosioka and Kawasima [Yosioka 1955]. Their work was admirably
summarized and generalized in 1962 in a short paper by Gorkov [Gorkov 1962], and in
this chapter we shall follow this paper in deriving the acoustic radiation force.

5.1 Time-averaged second-order pressure field and force

The observed acoustophoretic motion is not resolved on the µs time scale of the imposed
MHz ultrasound wave, but is the result of the radiation force averaged over a full oscillation
cycle. This in turn implies that to account for acoustophoresis, we must go beyond the
time-harmonic first-order equations established in Section 4.1, since the time average of
these fields are all zero. Therefore we consider the second-order expansion

ρ = ρ0 + ρ1 + ρ2, p = p0 + c2aρ1 + p2, and v = v1 + v2, (5.1)

and study time averages
〈
X
〉
over a full oscillation period τ of quantities X(t),

〈
X
〉 ≡ 1

τ

∫ τ

0
dt X(t). (5.2)

Assuming the inviscid limit η = 0, as in Eq. (4.8a), we find the time-averaged second-
order pressure

〈
p2
〉
by inserting the expansion (5.1) into the Navier–Stokes equation (4.1c),

∇〈
p2
〉
= −〈

ρ1∂tv1

〉− ρ0
〈
(v1 ·∇)v1

〉
, (5.3)
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where we note that ρ0
〈
∂tv2

〉
= 0, since the time derivative eliminates the time-independent

component in v2 leaving only periodic terms, which time averages to zero. Next we
use ∂tv1 = −(1/ρ0)∇p1 from Eq. (4.8a) as well as ρ1 = p1/c

2
a to obtain

〈
ρ1∂tv1

〉
=〈

p1∇p1
〉
/(ρ0c

2
a). Finally, since

〈
p1∇p1

〉
= (1/2)∇〈

p21
〉
and

〈
(v1 ·∇)v1

〉
= (1/2)∇〈

v21
〉

(given that v1 is a gradient field and thus has no rotation), we find a sum of pressure
fluctuations and the negative Bernouilli effect,

〈
p2
〉
=

1

2ρ0c
2
a

〈
p21
〉− 1

2
ρ0
〈
v21

〉
. (5.4)

In analogy with Eqs. (1.29) and (1.30), the time-averaged second-order acoustic radiation
force Frad now follows from a surface integral over any fixed surface ∂Ω encompassing the
oscillating particle of the time-averaged second-order pressure

〈
p2
〉
and momentum flux

ρ0
〈
v1v1

〉

Frad = −
∫

∂Ω
da

{[
1

2ρ0c
2
a

〈
p21
〉− 1

2
ρ0
〈
v21
〉]

n+ ρ0
〈
(n·v1)v1

〉
}
. (5.5)

5.2 The velocity potential in the long-wave limit

We are going to treat the acoustic radiation force on an elastic micrometer-sized particle
of radius a in an ultrasound field of wavelength λ, thus a ¿ λ, and from the point of
view of wave scattering, the particle is approximately a point particle. It is customary
to analyze the associate scattering problem in terms of the velocity potential φ1. Using
Eq. (4.8a) we can express v1 and p1 in terms of φ1 as

v1 = ∇φ1, (5.6a)

p1 = iρ0ωφ1. (5.6b)

Consequently, φ1 must fulfill the same wave equation (4.6a) as p1, which after changing
−iω back to ∂t reads

∇2φ1 =
1

c2a
∂ 2
t φ1. (5.7)

The main point in the calculation of the radiation force is to consider the total first-
order velocity potential φ1 as a sum of the incoming acoustic field φin and of the scattered
acoustic field φsc arising due the presence of the elastic particle,

φ1 = φin + φsc. (5.8)

Generally, the scattering potential from a point-like particle placed in the center of the
co-ordinate system can be expanded in a multipole expansion, where the coefficients are
functions of the so-called time-retarded argument t− r/ca, where t is the time and r is the
radial distance. The strategy in this treatment is to evaluate the radiation force integral
Eq. (5.5) in the so-called far-field limit r À λ, but to determine the coefficients of the
velocity potential in the so-called near-field limit r ¿ λ at the surface of the particle. In
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this way we obtain the most general derivation of the radiation force using the special
properties of the velocity potential in each of these two limits.

To evaluate the velocity potential φ1 in the near-field limit at the surface at the particle
we use that r/ca ≈ a/ca ¿ λ/ca = 1/f ≈ t, so the general time-retarded argument of φ can
be replaced by the instant argument t, and in the spatial co-ordinates φsc is a solution to
the Laplace equation ∇2φsc = 0. Consequently, we can represent the scattering potential
by a multipole expansion. In this expansion we only need the first two terms: (i) The
monopole term due to the presence of a point-like massive particle, and (ii) the dipole
term due to the introduction of the direction set by the instant velocity vp − vin of the
particle relative to the incoming liquid. Suppressing the explicit time dependence of α, β,
and vp − vin we obtain

φsc =
α

r
+

β(vp − vin)·er
r2

, r ¿ λ. (5.9)

In the following we determine the coefficient α by use of mass conservation and β by the
continuity of pressure and velocity at the surface of the particle.

5.3 The monopole term in the velocity potential

The presence of the particle implies that a mass rate ∂tm carried by the incoming acoustic
wave through ρin, that would have entered the region now occupied by the particle, is
being ejected by the oscillating particle surface independent of the particle velocity vp.

This oscillatory part of the surface velocity is given by v
(α)
sc = α∇(r−1) = −αer/r

2. Thus,
since the particle is a sphere with er = n, we get

∂tm =

∫

∂Ω
da er ·

(
ρ0v

(α)
sc

)
= −αρ0

∫

∂Ω
da

1

r2
= −4παρ0. (5.10)

On the other hand the rate of ejected mass can also be written in terms of rate of change
of incoming density ρ0 + ρin as well as volume Vp and compressibility Kp,

Kp = − 1

Vp

∂Vp

∂p
=

1

ρP

∂ρP
∂p

=
1

ρPc
2
p

, (5.11)

of the particle as follows,

∂tm = ∂t
[
(ρ0 + ρin)Vp

]
= Vp∂tρin + ρ0∂tVp = Vp∂tρin + ρ0

∂Vp

∂p
∂tpin

= Vp∂tρin − ρ0
Vp

ρPc
2
p

c2a∂tρin =

[
1− ρ0c

2
a

ρPc
2
p

]
Vp∂tρin. (5.12)

From this using Vp = (4/3)πa3 we find the monopole coefficient α, and thus the potential

φ(α)
sc = − a3

3ρ0

[
1− ρ0c

2
a

ρPc
2
p

]
∂tρin

1

r
. (5.13)



44 CHAPTER 5. ACOUSTIC RADIATION FORCE

5.4 The dipole term in the velocity potential

We proceed in a different way to determine the dipole coefficient β. Let the a spherical
coordinate system be located at the center of the particle with the polar axis pointing
along the instantaneous incoming acoustic field velocity vin such that

φin = vinr cos θ. (5.14)

For an inviscid liquid only the normal velocity components at a given boundary needs
to be continuous. At the boundary of the particle we have according to Eq. (5.8) that

vp = vin + v
(β)
sc independent of the mass monopole term, so we find from the velocity

dipole term in Eq. (5.9) that

(vp − vin)·er = ∂rφ
(β)
sc = −2β

r3

∣∣∣∣
r=a

(vp − vin)·er = −2β

a3
(vp − vin)·er. (5.15)

so that β = −a3/2 and the scattering potential becomes

φ(β)
sc = − a3

2r2
(vp − vin)·er. (5.16)

To determine vp or equivalently φp we need to solve the Laplace equation ∇2φ = 0 inside
the moving particle φp and outside in the liquid φ1. At infinity the scattered wave vanished
and φ1 → φin = vinr cos θ. At the boundary the radial velocity is continuous, ∂rv1 = ∂rvp
Eq. (5.6a), and the pressure is continuous, ρ0φ1 = ρPφp Eq. (5.6b). These boundary
condition are satisfied for the angular dependence, if we seek solutions proportional to
cos θ. Only two such solutions exist for the Laplace equation, r cos θ and r−2 cos θ. It is
easily checked that the proper solution is

φ1(r, θ) = vin

[
r +

ρP − ρ0
2ρP + ρ0

a3

r2

]
cos θ, (5.17a)

φp(r, θ) = vin
3ρ0

2ρP + ρ0
r cos θ. (5.17b)

From the last equation we find vp·er = ∂rφp = 3ρ0/(2ρP + ρ0)vin cos θ, and φ
(β)
sc becomes

φ(β)
sc =

ρP − ρ0
2ρP + ρ0

a3vin cos θ

r2
. (5.18)

5.5 The radiation force, general expression

Combining Eqs. (5.13) and (5.18) we obtain the full near-field scattering potential,

φsc = −f1
a3∂tρin
3ρ0r

+ f2
a3vin cos θ

2r2
, r ¿ λ (5.19)
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where the material-dependent coefficients f1 and f2 are given by

f1 = 1− ρ0c
2
a

ρPc
2
p

, and f2 =
2(ρP − ρ0)

2ρP + ρ0
. (5.20)

Given the near-field potential, the full far-field scattering potential follows from general
wave theory

φsc(r, t) = −f1
a3

3ρ0

∂tρin(t− r/ca)

r
− f2

a3

2
∇·

(
vin(t− r/ca)

r

)
, r À λ. (5.21)

With this final expression for φsc at hand we are in position to calculate the radiation
force Eq. (5.5), consisting of a sum of terms all proportional to squares of φ1 = φin + φsc.
This results in three types of contributions, (i) squares of φin containing no information
about the scattering and therefore yielding zero, (ii) squares of φsc proportional to the
square of the particle volume a6 and therefore negligible compared to (iii) the mixed
products φinφsc proportional to particle volume a3, and therefore the most dominant
contribution to the radiation force.

Keeping only these mixed terms, which physically can be interpreted as interference
between the incoming and the scattered wave, the ith component of Eq. (5.5) becomes

F rad
i = −

∫

∂Ω
da nj

{[
c2a
ρ0

〈
ρinρsc

〉− ρ0
〈
vink vsck

〉]
δij + ρ0

〈
vini vscj

〉
+ ρ0

〈
vsci vinj

〉
}

(5.22a)

= −
∫

Ω
dr ∂j

{[
c2a
ρ0

〈
ρinρsc

〉− ρ0
〈
vink vsck

〉]
δij + ρ0

〈
vini vscj

〉
+ ρ0

〈
vsci vinj

〉
}

(5.22b)

= −
∫

Ω
dr

{
c2a
ρ0

[〈
ρin∂iρsc

〉
+
〈
ρsc∂iρin

〉]
+ ρ0

[〈
vini ∂jv

sc
j

〉
+
〈
vsci ∂jv

in
j

〉]
}

(5.22c)

= −
∫

Ω
dr

{
− 〈

ρin∂tv
sc
i

〉− 〈
ρsc∂tv

in
i

〉
+ ρ0

〈
vini ∂jv

sc
j

〉− 〈
vsci ∂tρin

〉
}

(5.22d)

= −
∫

Ω
dr

{
〈
vini ∂tρsc

〉
+ ρ0

〈
vini ∂jv

sc
j

〉
}

(5.22e)

= −ρ0

∫

Ω
dr

〈
vini

(
∂ 2
j φsc −

1

c2a
∂ 2
t φsc

)〉
. (5.22f)

Here, we have used p1 = c2aρ1 in Eq. (5.22a), Gauss’s theorem in Eq. (5.22b), exchange
of indices ∂ivk = ∂i∂kφ = ∂i∂kφ = ∂ivk to cancel terms in Eq. (5.22c), introduction of
time derivatives by the continuity equation ∂tρ1 = −ρ0∂jv1,j and Navier–Stokes equation

ρ0∂tv1,i = −∂ip1 = −c2a∂iρ1 in Eq. (5.22d), vanishing of time-averages of total time deriva-
tives

〈
∂t(ρv)

〉
= 0 or

〈
ρ∂tv

〉
= −〈

v∂tρ
〉
for cancelation and rearrangement in Eq. (5.22e),

and finally reintroduction of the vector potential φsc in Eq. (5.22e).
We notice that the d’Alembert wave operator ∇2 − (1/c2a)∂

2
t acting on φsc appears

in the above integrand. That is good news, since we know that φsc is a sum of simple
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monopole and dipole terms. Just as the Laplace operator acting on the monopole potential
φ = q/(4πε0r) yields the delta function point-charge distribution, ∇2φ = −(q/ε0)δ(r), the
d’Alembert operator acting on the retarded-time monopole and dipole expressions (5.21)
also yields delta function distributions,

∇2φsc −
1

c2a
∂ 2
t φsc = f1

4πa3

3ρ0
∂tρin δ(r) + f2 2πa

3 ∇·
[
vin δ(r)

]
, r À λ. (5.23)

Now we see the great advantage of working in the far-field limit. The first term is easily
integrated, but for the second term we need to get rid of the divergence operator acting
on the delta function before we can evaluate the integral. This we manage by Gauss’s
theorem. First we note that ∇·[g(r)u(r)] = g∇·u+ u·∇g for any function g and vector
function u. Therefore

∫
∂Ω da n·(gu) = ∫

Ω dr∇(gu) =
∫
Ω dr (g∇·u+ u·∇g), and we have

derived the expression
∫
Ω dr g∇·u = − ∫

Ω dr u·∇g+
∫
∂Ω dan·(gu). Now, since u ∝ vδ(r)

we obtain a volume integral encompassing the delta function thus yielding a contribution
and a surface integral not encompassing the delta function thus yielding zero. So we get

Frad = −f1
4π

3
a3

〈
vin∂tρin

〉
+ f2 2πa

3ρ0
〈
(vin ·∇)vin

〉
(5.24a)

= f1
4π

3
a3

〈
ρin∂tvin

〉
+ f2 2πa

3ρ0
〈
(vin ·∇)vin

〉
(5.24b)

= −f1
4π

3ρ0c
2
a

a3
〈
pin∇pin

〉
+ f2 2πa

3 ρ0
〈
(vin ·∇)vin

〉
(5.24c)

= −f1
2π

3ρ0c
2
a

a3 ∇〈
p2in

〉
+ f2 πa

3ρ0 ∇
〈
v2in

〉
. (5.24d)

where we have integrated over the delta function in Eq. (5.24a), applied the previously used
rule

〈
ρin∂tvin

〉
= −〈

vin∂tρin
〉
in Eq. (5.24b), inserted ρin = pin/c

2
a and ∂tvin = −pin/ρ0 in

Eq. (5.24c), and finally pulled the nabla operator outside the time averages in Eq. (5.24d).
We see that the radiation force is a gradient force. It is therefore customary to introduce
a radiation potential U rad , and write the final expression for the radiation force acting on
a small particle (a ¿ λ) placed in an arbitrary acoustic field as follows,

Frad = −∇U rad , (5.25a)

U rad =
4π

3
a3
[
f1

1

2ρ0c
2
a

〈
p2in

〉− f2
3

4
ρ0

〈
v2in

〉]
, (5.25b)

f1 = 1− ρ0c
2
a

ρPc
2
p

= 1− Kp

K0

, (5.25c)

f2 =
2(ρP − ρ0)

2ρP + ρ0
. (5.25d)

The radiation potential U rad is proportional to the volume of the particle, and it contains a
positive contribution from the acoustic pressure fluctuations and a negative contribution
originating from the Bernouilli effect of the acoustic flow speed. As mentioned in the
beginning of the chapter, we also see in the f1 and f2 coefficient how the potential depends
on the density ratio ρP/ρ0 and on the speed of sound ratio cp/ca, or alternatively on the
compressibility ratio Kp/K0.
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5.6 The radiation force, standing plane wave

Our prime example of the acoustic radiation force is the case of a 1D planar standing
wave. This condition has been realized in numerous applications of the acoustic radiation
force in acoustophoresis, as we shall see in the following chapter. Here we simply state
the mathematical form of the first-order acoustic field, and then based on Eq. (5.25) write
down the expression for the radiation force

The first-order incoming acoustic fields are given by

φin(y, t) =
1

k
u0 cos(ky) cos(ωt), (5.26a)

vin(y, t) = ∇φin = −u0 sin(ky) cos(ωt) ex, (5.26b)

pin(y, t) = −ρ0∂tφin = ρ0ca u0 cos(ky) sin(ωt), (5.26c)

ρin(y, t) = −ρ0
c2a

∂tφin = ρ0
u0
ca

cos(ky) sin(ωt), (5.26d)

where we have used the usual real-time representation and introduced the wavenumber
k = 2π/λ, which also fulfils ω = kca. The time averages needed in Eq. (5.25) are simply〈
cos2(ωt)

〉
=

〈
sin( ωt)

〉
= 1

2 , and we arrive at the following expression for the radiation
potential

U rad = π a3ρ0u
2
0

[
f1

1

3
cos2(ky)− f2

1

2
sin2(ky)

]
. (5.27)

The corresponding radiation force is easily found by differentiation,

F rad
y = −∂yU

rad = 2πka3ρ0u
2
0

[
f1

1

3
cos(ky) sin(ky) + f2

1

2
sin(ky) cos(ky)

]
(5.28a)

= πka3ρ0u
2
0

[
1

3
f1 +

1

2
f2

]
sin(2ky) (5.28b)

= 4πka3
(1
4
ρ0u

2
0

)[ρP + 2
3(ρP − ρ0)

2ρP + ρ0
− 1

3

ρ0c
2
a

ρPc
2
p

]
sin(2ky), (5.28c)

which is usually written as

F rad
y = 4πa2(ka) EacΦ sin(2ky), (5.29a)

Φ =
ρP + 2

3(ρP − ρ0)

2ρP + ρ0
− 1

3

ρ0c
2
a

ρPc
2
p

, (5.29b)

Eac =
1

4
ρ0u

2
0 =

p2a
4ρ0c

2
a

, (5.29c)

where 4πa2 is the surface area of the sphere, ka = 2πa/λ is the size-to-wavelength ratio,
Eac is the acoustic energy density in the standing wave, Φ is the acoustophoretic contrast
factor, and pa = ρ0cau0 is the pressure amplitude. A sketch of the acoustic radiation force
is given in Fig. 5.1.

Most of the parameters can easily be estimated from table values of materials and from
the geometry of the given acoustofluidic device. However, the energy density is not so easy
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Figure 5.1: End view of a straight water filled channel (hatched walls) with a transverse
standing ultrasound resonant half-wavelength pressure wave (gray, half cosine wave). The
radiation force F rad

y is period doubled and phase shifted (red, full sine wave) relative to the
pressure wave. Red (blue) arrows correspond to the acoustophoretic force for a particle
with a positive (negative) acoustophoretic contrastfactor Φ. Particles with a positive Φ
moves towards the central nodal line (dotted line), while those with a negative Φ moves in
the opposite direction towards the anti-nodes at the wall. Figure adapted from the DTU
Nanotech bachelor thesis by Andersen, Nysteen and Settnes [Andersen 2009].

to estimate, since the coupling of acoustic energy from the piezo transducer into the fluidic
system is hard to predict. A typical value [Barnkob 2010] for low-voltage (. 10 V) piezo
transducers running at a few MHz is

Eac ≈ 10− 100 J m−3. (5.30)

In the following chapter we look into the experimental realizations of the acoustic radiation
force.



Chapter 6

Microchannel acoustophoresis

In this chapter we study some of the practical aspect of particle handling in microchannel
acoustophoresis. The major part of the material has been developed in a collaboration
between Prof. Thomas Laurell and his PhD student Per Augustsson at Lund University
and Prof. Henrik Bruus and his PhD student Rune Barnkob of DTU. In Section 6.5 is
mentioned some recent examples in the literature of various applications of the acoustic
radiation force in acoustofluidic microsystems.

6.1 Particle handling in acoustophoresis

Basic physical properties of acoustophoresis, such as energy density, local pressure ampli-
tudes, resonance line shapes, and resonance Q factors, are most easily studied in simple
rectangular channels embedded in silicon/glass chips [Barnkob 2010]. An example of such
chips is shown in Fig. 6.1(a), where each chip consists of a straight channel with one
inlet and one outlet fabricated using standard silicon microfabrication techniques. The
channel was sealed by an anodically bonded pyrex glass lid, and short pieces of silicone
tubing were glued to their respective 1-mm-diameter holes in the glass lid. The width W
of the chip can be characterized by the ratio α of the number of acoustic wavelengths in
silicon and that of water. With the parameters of Table 4.1 we find λsi = 5.7λwa and
α = (W − w)/(5.7w).

An actual experimental setup for carrying out basic acoustophoretic measurements is
shown In Fig. 6.1(b). The acoustofluidic chip is mounted on a piezoelectric PZT transducer
(piezo), and sufficient acoustic coupling is provided by a thin glycerol layer. To isolate the
system acoustically at least to some degree, the two elements are fixed in a PMMA holder,
such that the chip is only in contact with the holder through its inlet/outlet silicone tubing
and via the piezo, which in turn was mounted so that all contact with the PMMA holder
is restricted to its edges. The piezo is actuated by applying a harmonically oscillating
voltage drop generated from a tone generator in series with an amplifier, and the applied
peak-to-peak voltage across the piezo transducer is measured by an oscilloscope. The
channel was monitored through an microscope with an attached CCD camera.

When carrying out the experiments a liquid suspension of 5 µm polystyrene microbeads
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Figure 6.1: (a) Microfluidic silicon/glass chips fabricated by Per Augustsson at the Laurell
Group, Lund University. The chips contain straight channels of length l = 40 mm, width
w = 377 µm, and height h = 157 µm. The channels are etched down into the silicon chip
of thickness hsi = 350 µm, and they are covered by a pyrex lid of thickness hpy = 1.13 mm.
The lengths of the chips are L = 50 mm and the widths are W = 2.52 mm (α = 1) and
W = 4.67 mm (α = 2), respectively. (b) A photograph of the experimental setup at Lund
University with the chip including inlet/outlet tubes and the PZT piezo crystal mounted
under the microscope and the CCD camera. The piezo has the dimension 50.0 mm ×
12.0 mm × 1.0 mm, and thus the entire chip rests on it. Pictures adapted from the DTU
master thesis by Rune Barnkob [Barnkob 2009].

was injected into the microchannel. The microbead concentrations were in the range from
0.1 g/L to 0.5 g/L. The sample liquid is contained in a 1 mL plastic syringe, in which
a small magnet resides. By stirring with an external magnet, a homogeneous microbead
distribution is ensured and significant sedimentation is avoided. A syringe pump was
used to purge the microchannel with the sample liquid prior to each run. During all
measurements the flow was temporarily stopped.

6.2 Particle paths in acoustophoresis

The path of a microbead moving by acoustophoresis is traced out by the time-dependent
co-ordinates

(
x(t), y(t)

)
. A particularly simple analytical expression for the transverse part

y(t) of such a path can be obtained from the acoustic radiation force Eq. (5.29a) valid in
the case of a standing 1D transverse ultrasound wave. As in Section 3.6 we can neglect
inertial effects and determine the transverse path y(t) by balancing the acoustophoretic

force F rad
y with the viscous Stokes drag force F drag

y from the quiescent liquid. The force
balance results in the following differential equation,

6πηa
dy

dt
= 4πa2(ka) EacΦ sin(2kyy), (6.1)
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Separating the variables y and t, and using the integral 2
∫
ds/ sin(2s) = log

∣∣ tan(s)∣∣ lead
to an analytical expression for the transverse path,

y(t) =
1

ky
arctan

{
tan

[
kyy(0)

]
exp

[
4Φ

9
(kya)

2Eac

η
t

]}
, (6.2)

where y(0) is the transverse position at time t = 0. Inverting the expression, we can also
calculate the time t it takes a particle to move from any initial position y(0) to any final
position y(t),

t =
9η

4Φ(ka2)Eac
ln

[
tan

[
kyy(t)

]

tan
[
kyy(0)

]
]
=

9

4Φ

c2a
ω2a2

η

Eac
ln

[
tan

[
kyy(t)

]

tan
[
kyy(0)

]
]
. (6.3)

This expression is important for designing acoustofluidic devices to separate particles
having the same sign of their acoustophoretic contrast factor Φ. In this case separation
must be based on variations in the time t(w) it takes a particle to be focused transversely
given the width w of the microfluidic channel. If the axial convection speed of the carrier
liquid is v0, then the distance ∆`(v0, w) a given particle has to flow along the channel
before it has been traversed the transverse focus distance w can be written as

∆`(v0, w) = v0t(w) ∝ V − 2
3Φ−1 v0 ω

−2E−1
ac , (6.4)

where V ∝ a3 is the volume of the particle. The larger a particle, the shorter it has to be
convected before it has been focused.

The acoustic parameters was measured in situ by observing the transient acoustophoretic
focusing of the microbeads. First, the driving frequency is tuned until observing a strong,
resonant, acoustic focusing of the polystyrene microbeads towards the center of the chan-
nel. Then the ultrasound field is turned off, and a fresh solution of microbeads from the
syringe pump is injected into the channel. When a homogeneous microbead distribution
is observed, the flow is stopped, Fig. 6.2(a). Finally, the ultrasound is turned back on,
and the transient focusing of the microbeads towards the channel center is recorded by the
CCD camera, Fig. 6.2(b). From the frames of the resulting movie we can then determine
the transverse paths y(t) of the microbeads, an example of which is shown in Fig. 6.2(c).

The transverse path y(t) is extracted from the video recordings by employing the
free video analysis tool Tracker 2.6 [Brown 2009]. This software enables tracking of a
polystyrene microbead by simple manual mouse-clicking on the microbead position y on
each movie frame, for which the time t is known. The length scale in the y-direction is
calibrated by the distance between the visible channel walls as shown in Fig. 6.2(a). The
resulting list of (t, y)-coordinates can be extracted for any tracked microbead path, see
Fig. 6.2(b), and plotted as shown in Fig. 6.2(c) for a driving frequency of f = 1.9940 MHz
and a driving voltage Upp = 1.52 V.

The axial motion x(t) seen in the last part of the paths shown in Fig. 6.2(b) is due to
hydraulic compliance of the system leading to difficulties in keeping the liquid at complete
rest.
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Figure 6.2: (a) Starting position (circles) of six microbeads in the channel of the chip
with α = 2. The channel walls are the two thick vertical lines separated by w = 377 µm.
(b) Tracking of the paths of the six microbeads. (c) Measurement (circles) for one of the
microbeads of its transverse position y from the left wall as a function of time t. The
fitted curve (full line) is given by Eq. (6.2) with only two fitting parameters: the acoustic
energy density Eac and the half wavelength λ/2 of the transverse standing pressure wave.
Reproduced from the DTU master thesis by Rune Barnkob [Barnkob 2009].

6.3 Energy density as function of voltage and frequency

Using the energy density Eac and the half-wavelength λ/2 as the only fitting parameters,
a curve of the form y(t) given by Eq. (6.2) is fitted to the data points by the least-squares
method. As shown by the full curve in Fig. 6.2(c), this fitting procedure yields good results:
the observed path has the theoretically predicted shape, and we can extract reliable values
for the acoustic energy density Eac. In the given case we found Eac = 6.69 J/m3, and we
also note that the fitted value for λ/2 is 375 µm, very close to the expected value, namely
the width of the channel w = 377 µm.

From Eq. (5.29c) we find the pressure amplitude in the chip with α = 2 to be

pa = 2
√

ρwac2wa Eac ≈ 0.242 MPa, (6.5)

which is 10−4 times the cohesive energy density 2.6 GPa of water. Equivalently, the density
fluctuations are 10−4 times ρwa, and thus the acoustic perturbation theory holds even at
resonance. In our low-voltage experiments we have measured energy densities in the
range 0.65 – 50 J/m3 corresponding to pressure amplitudes in the range 0.08 – 0.66 MPa.
The upper range of these results are consistent with previously reported estimates in the
literature for microbead acoustophoresis in microsystems. Using external electric forces,
Wiklund et al. [Wiklund 2003] measured energy densities in the range 65 – 650 J/m3

corresponding to pressure amplitudes in the range 0.76 – 2.4 MPa, while Hultström et
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Figure 6.3: (a) Measured acoustic energy density Eac versus applied peak-to-peak voltage
Upp on the piezo transducer (points) for α = 1. A power law fit (full line) to the data
is close to the expected square law, Eac ∝ (Upp)

2. (b) Measured acoustic energy density
Eac versus applied frequency f on the piezo transducer (circles) for the α = 2 chip for
Upp = 1.48 V. The data points are fitted by a sum (full line) of two Lorentzian peaks
(dashed lines). The values of the fitting parameters are listed on the figure. The peak
spacing is ∆f12 = 9.4 kHz, while the line widths are δf1 = 9.6 kHz and δf2 = 3.5 kHz.
Reproduced from the DTU master thesis by Rune Barnkob [Barnkob 2009].

al. [Hultström 2007] used force balance between gravity and acoustophoretic forces to
measure energy densities in the range 37 – 82 J/m3 corresponding to pressure amplitudes
in the range 0.57 – 0.85 MPa,

We now use the above procedure to extract the acoustic energy density Eac and half the
wavelength λ/2 for 5 – 15 (typically 8) individual microbeads properly chosen in the field
of view for any given setting of the external parameters. When plotting the resulting data
as a function of the parameters, each data point is a statistical average of these individual
measurements, and the error bars are the associated standard deviations. First, at the
driving frequency f = 1.9976 MHz, we study the energy density and the half wavelength
as a function of the peak-to-peak value Upp of the driving voltage on the piezo transducer
in the range from 0.5 V to 1.9 V. In Fig. 6.3(a) we see that the resulting ten data points are
well fitted to a power law of the form Eac ∝ (Upp)

2.07. This is close to a power of 2, which
is expected since the acoustic pressure delivered by the piezo transducer is proportional to
the applied voltage, and the acoustic energy density is proportional to the square of the
pressure, see Eq. (6.5). We also note that the statistically determined error bars increase
with increasing driving voltage and thus with increasing microbead velocity. This is as
result of the decreased temporal resolution of the paths given the fixed rate of 16 CCD
frames per second and the increased microbead velocity.
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Figure 6.4: A top view color plot (blue negative, red positive) of the pressure field of three
ultrasound resonances calculated in the shear-free 2D model. For each resonance is shown
the number of nx of half wavelengths in the axial direction, the resonance frequency f ,
and the distance ∆f in frequency space to the neighboring resonance. The small black
rectangles mark the microscope field of view. (b) Zoom-in on calculated particle paths in
the given pressure field. The color plot is the potential U rad calculated from Eq. (5.25b)
(red high, blue low). Reproduced from the DTU bachelor thesis by Andersen, Nysteen,
and Settnes [Andersen 2009].

6.4 Resonance frequencies and Q factors

By measuring the acoustic energy density Eac as a function of the applied piezo transducer
frequency f we can characterize the acoustic resonances in more detail. The following
results were obtained on the chip α = 2 of width W = 4.67 mm, see Fig. 6.1(a). The
driving frequency f was varied from 1.9900 MHz to 2.0100 MHz, while the tone generator
and the amplifier were set to fixed values. However, due to the piezo-electric coupling of
the transducer, the actual peak-to-peak voltage Upp varied between 1.44 V and 1.60 V
as a function of frequency. We used the quadratic dependency of Eac on Upp, as derived
in Fig. 6.3(a), to correct all measured values of Eac to correspond to the same average
voltage 1.48 V.

The measured acoustic energy spectrum Eac(f) is shown in Fig. 6.3(b). A clear max-
imum is seen at f1 = 2.0021 MHz while a smaller, less pronounced peak is seen at
f2 = 1.9927 MHz. According to Eq. (4.20), a simple acoustic resonance can be described
by a Lorentzian line shape, and we therefore fit the measured spectrum by the sum of two
Lorentzian line shapes. In this case we thus end up with six fitting parameters, three per
peak, the energy density maxima Eac,1 and Eac,2, the resonance frequencies f1 and f2,
and the Q factors Q1 and Q2. The values of these parameters are listed in the caption of
Fig. 6.3, and from the energy densities we extract as in Eq. (6.5) the pressure amplitudes
p1,1 = 0.37 MPa and p1,2 = 0.16 MPa for peak 1 and 2 respectively.

The two resonance peaks in Fig. 6.3 are separated by a spacing ∆f12 = f2 − f1 =
9.4 kHz, while the line width of the two peaks are of the same order of magnitude, namely
δf2 = 9.6 kHz and δf2 = 3.5 kHz. These values emphasize, as is also seen directly on the



6.5. EXAMPLES OF ACOUSTOPHORETIC DEVICES 55

graph, that the individual acoustic resonances are barely resolved.

The origin of the observed two-peak structure is explained qualitatively by the 2D
pressure eigenmode simulations shown in Fig. 6.4. It is seen how axial modes appear and
gives rise to close-lying resonances. While our non-shear-wave model does not allow for
accurate determination of these resonance frequencies, it nevertheless provide a reliable
order-of-magnitude estimate for the spacing between them, ∆f ≈ 12 kHz, close to the
observed ∆f12 = 9.4 kHz. Furthermore, we speculate that the difference in amplitude
between the two peaks shown in Fig. 6.3 is mainly due to the shift in wave pattern going
from one value nx to the neighboring peak at nx + 1 as illustrated by black rectangles in
6.4, representing the microscope field of view. For nx = 17 the pressure amplitude in the
field of view is much smaller than that for nx = 18. For more details on axial modes see
Ref. [Barnkob 2009b].

In 6.4(b) is shown how individual particle paths looks like for three different flow speeds
v for a fixed acoustic field. The color plot is the potential U rad calculated from Eq. (5.25b),
and it is seen how the potential landscape induces bumps in the particle trajectories, bumps
that get more pronounced the lower the flow rate is in the microchannel.

6.5 Examples of acoustophoretic devices

To give the reader an impression where the research on acoustophoresis stands right now,
I have selected the few papers from 2009 and 2010 and present an ultra short abstract for
each of them.

Acoustic whole blood plasmapheresis chip for prostate specific antigen mi-
croarray diagnostics by A. Lenshof, A. Ahmad-Tajudin, K. Jär̊as, A.-M. Swärd-Nilsson,
L. Åberg, G. Marko-Varga, J. Malm, H. Lilja, and Thomas Laurell. Anal. Chem. 81,
6030 (2009). Acoustophoresis has been employed to generate high quality plasma from
whole blood, whcih is of major interest for many biomedical analyses and clinical diag-
nostic methods. The red blood cells were focused in the center of thechannel, from where
they were removed by outlets placed in the bottom of the channel.

Flow-free transport of cells in microchannels by frequency-modulated ul-
trasound by O. Manneberg, B. Vanherberghen, B. Önfeltab and M. Wiklund. Lab Chip
9, 833 (2009). A flow-free transport of cells and particles is demonstrated by the use
of frequency-modulated ultrasonic actuation of a microfluidic chip. The method is used
for controlling the motion and position of cells monitored with high-resolution optical
microscopy,

Acoustic differential extraction for forensic analysis of sexual assault Evi-
dence by J. V. Norris, M. Evander, K. M. Horsman-Hall, J. Nilsson, T. Laurell, and J.
P. Landers. Anal. Chem. 81, 6089 (2009). An acoustic differential extraction method
has been developed, which relies on acoustic trapping of sperm cells in the presence of
epithelial cell lysate (which is unretained), and laminar flow valving to direct the male
and female fractions to separate outlets. The method has led to a significant speed-up
compared to the conventional separation method used by crime laboratories.

Selective bioparticle retention and characterization in a chip-integrated con-
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focal ultrasonic cavity by J. Svennebring, O. Manneberg, P. Skafte-Pedersen, H. Bruus,
and M. Wiklund. Biotech Bioeng 103, 323-328 (2009). Selective retention and positioning
of cells or other bioparticles ultrasonic manipulation in a microfluidic expansion chamber
during microfluidic perfusion. By triple-frequency ultrasonic actuation during continuous
microfluidic sample feeding, a set of several manipulation functions performed in series is
demonstrated: sample bypass, injection, aggregation, and retention-positioning.

Integrated acoustic and magnetic separation in microfluidic channels by J.
D. Adams, P. Thévoz, H. Bruus, and H. T. Soh. Appl. Phys. Lett. 95 254101 1-3 (2009).
A monolithic device for multiparameter particle separation based on integrated acoustic
and magnetic bioparticle separation is presented. The device is capable of high-purity
separation of a multicomponent particle mixture at a throughput of up to 108 particles/h.

Harmonic Microchip Acoustophoresis: A Route to Online Raw Milk Sam-
ple Precondition in Protein and Lipid Content Quality Control by C. Grenvall,
P. Augustsson, J. R. Folkenberg, and T. Laurell. Anal. Chem. 81, 6195 (2009). A mi-
crofluidic acoustophoresis approach for raw milk sample preconditioning prior to protein
and lipid content analysis in the context of raw milk quality control has been developed.
Two higher harmonic acoustophoresis modes, 2λ/2 and 3λ/2, are explored offering lipid
content enrichment or depletion, respectively. Lipid content depletion above 90% was ac-
complished bypassing the problem of lipid aggregation and subsequent clogging inherent
in the usual λ/2 acoustophoresis systems.

Acoustophoretic Synchronization of Mammalian Cells in Microchannels by
P. Thévoz, J. D. Adams, H. Shea, H. Bruus, and H. T. Soh. Anal. Chem. 82, 3094 (2010).
In a microfluidic system acoustophoresis is used to achieve cell cycle phase synchronization
in an asynchronous mixture of mammalian cells in a high-throughput and reagent-free
manner based on cell cycle-dependent fluctuations in cell size. The system allows for
gentle, scalable, and label-free synchronization with high G1 phase synchrony ('84%)
and throughput (3× 106 cells/h per microchannel).

6.6 Acoustic radiation versus acoustic streaming

We finish this brief introduction to the radiation force Frad in acoustophoresis by a short
discussion of one of its limitations. We have seen that Frad scales with the particle vol-
ume (4π/3)a3, but we also know that given a particle has the velocity v relative to the
surrounding liquid, the Stokes drag force is Fdrag = −6πηav, which scales with the radius
a. It is therefore expected that the radiation force will be insignificant for small particles.

It so happens that acoustic waves in a liquid imparts momentum to the liquid. To
second order a rectification is introduced by the convective acceleration ρ0(v1 ·∇)v1, and
as a result a time-averaged second-order velocity field vstr appears. The motion is gen-
erated in the so-called viscous boundary layer near liquid/solid interfaces, within which
the magnitude of the first-order velocity is forced to decrease from its bulk value to zero
[Landau 1993]. The thickness δ of this layer can be estimated by momentum diffusion
Eqs. (3.20) and (3.23a) as δ ≈

√
2ν/ω ≈ 1 µm. Here we have exploited that 1/ω sets the

time scale of the problem. Viscosity is responsible for the appearance of vstr, however, it
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Figure 6.5: Experimental comparison of acoustic radiation and streaming forces on mi-
crobeads in a square water-filled chamber of side length 2 mm and depth 0.2 mm in a
silicon/glass chip. Initial condition: homogeneous mix in a quiescent carrier liquid (wa-
ter). An ultrasound field at f = 2.17 MHz is then turned on. Transient PIV measurements
after 1 ms (white velocity arrows) and microscope picture after 1 s when steady state has
been reached. (a) 5 µm polyamide tracer beads under transient motion (white arrows) and
focesd by radiation forces in steady state (black bands). (b) 1 µm polystyrene microbeads
in vortex motion due to acoustic streaming after 1 ms, and no accumulation observed after
1 s. Reproduced from the DTU PhD thesis by S. Melker Hagsäter [Hagsäter 2008].

only sets the length scale of the boundary layer and not the magnitude vstr of the acoustic
streaming. To estimate vstr we argue that the only meaningful way to generate a velocity
to second order in the acoustic velocity v1 is

vstr = Ψ
v21
ca

, where Ψ ≈ 1. (6.6)

Here Ψ is a geometry dependent factor of order unity, e.g. Ψ = 3/8 for a standing wave
parallel to a planar wall. A particle kept fixed in an acoustic streaming field is subject to
an acoustic streaming force of magnitude

Fstr = 6πηa vstr = 6πηaΨ
v21
ca

. (6.7)

We can now obtain an estimate for the critical particle radius ac below which the
radiation force no longer dominates. We just assume that it is Fdrag that keeps the particle

fixed in the acoustic streaming. Combining the demand F rad = Fstr with the expressions
(5.29a) and (6.7) for the forces, we get

πa3ck ρ0v
2
1Φ = 6πηac Ψ

v21
ca

, (6.8)

from which we obtain the critical particle radius ac or diameter dc,

ac =

√
3Ψ

Φ

2ν

ω
=

√
3Ψ

Φ
ν ≈ 1 µm or dc ≈ 2 µm. (6.9)
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In Fig. 6.5 is shown an experimental example of the cross-over from radiation dominated
to streaming dominated acoustophoresis [Hagsäter 2007]. An acoustophoretic experiment
was first carried out with the 5-µm-diameter microbeads, see panel (a), then the sample
was replaced with a suspension of 1-µm-diameter microbeads, and the experiment was
repeated keeping the values of all other parameters fixed, see panel (b). In a single
experiment a well mixed solution was led into the square chamber (side width 2 mm and
depth 0.2 mm), the external flow was stopped, and a 2.17 MHz ultrasound field was set up
via a piezo-transducer underneath the chamber. About 1 ms later the transient velocity
was determined by particle image velocimetry (white arrows on the figure). Finally, after
about 1 s a photo was taken of the device. The large particles collect in bands coinciding
with the pressure nodal planes. The small particles never collected but continued to flow
in the vortices clearly visible in panel (b).

This result emphasizes the difficulties we currently face trying to apply acoustophore-
sis to sub-micrometer particles such as proteins, enzymes, and other biomolecules. The
acoustic streaming is not so easy to control as the radiation force, so more studies are
needed in this particular area of acoustofluidics.
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Chapter 1

Fundamentals of Nonlinear

Acoustics and Streaming

Acoustic streaming can be classified as two common types. One happens because of
the spatial attenuation of a wave in free space, e.g., an attenuating beam of plane trav-
eling wave. This type of streaming is usually associated with a high Reynolds number
flow. The second mechanism arises from the friction between the fluid medium and a
solid wall when the former is vibrating in contact with the latter, e.g., a wave traveling
down a wave-guide, a standing wave in a resonant chamber, or a wave scattering off
a solid object. Unlike the spatial attenuation mentioned earlier, this effect is largely
confined to a thin viscous boundary layer of thickness δ = (2ν/ω)1/2 on the surface,
where ν is the kinematic viscosity of the medium and ω is the angular frequency of
the wave. It is also a significant dissipation mechanism, and provides a strong force
in driving acoustic streaming. While the medium outside the layer vibrates irrota-
tionally as in a sound field, the one inside the layer is forced to vibrate rotationally
(i.e., with vorticity) because its motion has to conform to the no slip condition on
wall. Most of the discussion in this lecture series will be on the second mechanism of
streaming.

If a body of typical dimension a oscillates with velocity U∞ cos(ωt) in a viscous
fluid and ε = U∞/ωa � 1, then, although the leading order solution is oscillatory,
higher order terms include not only higher harmonics but steady contributions to the
velocity. Mathematically, this can be explained by existence of the nonlinear terms
which may have steady nonzero component. For example, cosωt cosωt = cos2 ωt =
1

2
(1 + cos 2ωt) has 1

2
as a steady component. Physically, the condition ε� 1 implies

that the amplitude of the oscillation is small compared with a. The existence of
this steady streaming was first pointed out by Rayleigh [18] in his work on Kundt’s
dust tube and was later studied in a boundary layer context by Schlichting [23] who
considered flows with the additional constraint |M |2 = ωa2/ν � 1, where ν denotes
the kinematic viscosity of the fluid. For such a flow it is now well established that
the first order fluctuation vorticity is confined to a shear-wave region of thickness
O(ν/ω)1/2 beyond which steady velocities O(εU

∞
) persist. Riley [20] has considered

the case of an oscillating sphere for both |M | � 1 and 0 < |M | < 1. He calculated the

5



6 Chapter 1 Fundamentals of Nonlinear Acoustics and Streaming

streaming around the sphere which is at the velocity antinode of the wave that vibrates
vertically. Lee & Wang [11] considered an oscillating sphere slightly displaced from
the antinode of a standing wave for |M | � 1. Their analysis relied on the tangential
velocity (slip) calculation based on an analytical algorithm.

1.1 Oscillatory Flows

For sound waves, the basic equations of fluid mechanics are applicable. While our
focus is nonlinear acoustics, we shall start with the development of the linear theory.
In the general tensor form for an compressible fluid, we have (see, e.g. Landau &
Lifshitz [10]):
continuity:

∂ρ

∂t
+

∂

∂xi

(ρui) = 0 or
∂ρ

∂t
+∇· (ρu) = 0 (1.1)

momentum:

ρ

(
∂ui

∂t
+ ui

∂ui

∂xk

)
= −

∂p

∂xi
+

∂

∂xi

[
μ

(
∂ui

∂xk
+

∂uk

∂xi
−

2

3
δik

∂um

∂xm

)]
+

∂

∂xi

(
β
∂um

∂xm

)
,

(1.2)
For most practical situations, the viscosities, μ and β, may be treated as constant,
resulting in the following vector form of the momentum equation,

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p++μ∇2

u+
(
β + 1

3
μ
)
∇ (∇ · u) . (1.3)

Sound waves consist compression and rarefaction of a compressible fluid which can be
characterized by oscillatory motion of small amplitude. We begin with the linearized
form of the above equations by considering small acoustic disturbances to the pressure
and density, i.e.,

p = p0 + p′ and ρ = ρ0 + ρ
′
, with ρ

′
� ρ0 and p

′
� p0. (1.4)

Similarly, the velocity is taken to be of the form

u = u0 + u
′ (1.5)

but since the undisturbed state here is a quiescent fluid, u0 = 0, and the disturbed
atate velocity u

′ is the only one that needs to be considered. In addition, u′ is
considered to be small whereby the inertial effects (the term u · ∇u) can be neglected.
This linearization is of course not valid near regions of large changes in the velocity
(such as a solid boundary) and under those circumstances, we will need to include this
nonlinear term in the analysis. In addition, ignoring any viscous effects, equations
(1.1) and (1.3) takes the form,

∂ρ′

∂t
+ ρ0∇ · u = 0, (1.6)
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and

ρ0
∂u

∂t
= −∇p′. (1.7)

Now, assuming adiabatic compression and rarefactions, and a linear relationship be-
tween pressure and density,

p′ =

(
∂p

∂ρ0

)
s

ρ′ (1.8)

and considering the flow to be irrotational, i.e., allowing the velocity to be described
by a potential,

u = −∇φ, (1.9)

equation (1.7) becomes

∇

(
p′ + ρ

∂φ

∂t

)
= 0, (1.10)

which may be integrated to give

p′ = −ρ
∂φ

∂t
. (1.11)

Next, using this in the continuity equation (5.17), we obtain the wave equation

1

c2
∂2φ

∂t2
= ∇2φ. (1.12)

This is of course the linearized version which is applicable in many practical circum-
stances. Here c is the speed of sound given by

c =

√
∂p

∂ρ
=

√
γRT

m
, (1.13)

where γ = cp/cv is the ratio of the specific heats, and m is the molecular weight of
the medium.

One familiar solution to the wave equation is the plane wave (one-dimensional)

φ(x, t) = Aei(kx−ωt (1.14)

where k = ω/c is known as the wavenumber, and ω is the wave frequency. This
expression represents a traveling wave, i.e., a wave traveling with a specific velocity.
Admitting other possible forms of solutions and superimposing several solutions with
various frequencies, we may write

φ(x, t) =
∞∑

n=0

ane
iωn(x/c−t) + bne

−iωn(x/c−t) + cne
iωn(x/c+t) + dne

−iωn(x/c+t), (1.15)

or in real variables, we have

φ(x, t) =
∞∑

n=0

[A∗n sin(ωnx/c) +B∗n cos(ωnx/c)] [C
∗

n sin(ωnt) +D∗

n cos(ωnt)] (1.16)
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By introducing parameters α
n
and β

n
, it is not difficult to see that

φ(x, t) =
∞∑

n=0

An cos(ωnx/c+ αn) cos(ωnt+ βn) (1.17)

Each term in the summation represents a standing wave of the given frequency,

φ(x, t) = A cos(ωx/c+ α) cos(ωt+ β),

where we have dropped the index n. Here we refer to A as the amplitude of the wave.
For a single-frequency wave, the phase-differences α and β can be dropped by just
choosing appropriate coordinate reference frames so that

φ(x, t) = A cos(ωx/c) cos(ωt).

The velocity now is

u(x, t) = −
∂φ(x, t)

∂x
=

Aω

c
sin(ωx/c) cos(ωt),

and the pressure is

p′(x, t) = −ρ
∂φ(x, t)

∂t
= Aω cos(ωx/c) sin(ωt).

The velocity takes on zero values at positions ωx/c = nπ, or x = nπc/ω. These
points are called the velocity nodes. The velocity has maximum magnitude at x =(
n+ 1

2

)
πc/ω. At these points known as the antinodes, the pressure is zero. These

nodes and antinodes are shown in Figure 1.1
This is an example of a simple standing wave in which the flow field is both inviscid

and irrotational. However, as mentioned earlier, there are two types of situations in
which nonlinearities can set in. One is due to the presence of solid boundaries which
can change this (inviscid and irrotational) characteristic by causing sufficiently large
velocity gradients so that viscous forces are significant, and at the same time vorticity
ζ =∇× u is generated at the surface. Mathematically, the term u · ∇u in equation
(1.3) becomes relevant. Among the simplest examples to illustrate this concept is
Rayleigh streaming which is mentioned later. Another type of nonlinearity comes
about without any boundaries when an ultra-high-frequency beam penetrates the
half-space x > 0. The leads to what is known as the quartz wind which is discussed
next.

As a visual example of the solid-boundary effect can be seen in Figure 1.2 of the
flow around an oscillating cylinder. Here, one can see recirculating zones near the
cylinder walls where the flow is not irrotational.

One of the earliest examples of this type of streaming is Rayleigh’s problem [18] in
which standing sound waves between two walls a distance 2a apart were considered.
Away from the walls, the velocity field is described by the inviscid, irrotational flow
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pressure antinode

velocity antinode
pressure inode
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pressure antinode

Figure 1.1: Node and antinode identification

wave equation (1.12). Assuming only an x-component of velocity for the inviscid field,
the solution in non-dimensional form is

u = (sin(akx) cos t, 0), (1.18)

which, of course, has zero time-average velocity. For this case, there is a streaming
velocity at the edge of the stokes layer given by

ue = −
3
8
ak sin 2akx,

As discussed later on page 15, detailed calculation yield a higher-order steady stream-
ing velocity field with both x and y components in the form

u
(s)
1 =

{
3
16
ak(1 − 3y2) sin 2akx,−3

8
a2k2(y − y3) cos 2akx,

}
(1.19)

or equivalently, as a stream function,

ψ(s)
1 (x, y) = 3

16
(y − y3) sin 2akx, (1.20)

where the superscript (s) refers to the steady streaming, i.e., a mean dc component.
For proper scaling, these higher-order expressions (1.20) and (1.19) should be mul-
tiplied by the small parameter ε = U0/ωa. The streamlines are exhibited (schemat-
ically) in Figure 1.3 for half the vertical region, below the plane of symmetry. The
coordinate y is scaled with half the vertical dimension.
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Figure 1.2: Images of steady acoustic streaming near a cylindrical electrode for vertical
oscillations. Three different dimensionless acoustic oscillation frequencies are shown
(M = 100, 200, and 500). [15]
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Figure 1.3: A schematic of the flow streamlines in Rayleigh’s problem [18]



Chapter 2

Singular Perturbation Analysis of

Nonlinear Acoustics

2.1 The Quartz Wind

In the half-space x > 0 consider a one-dimensional beam of frequency ω. Taking 1/ω
as a time scale, c/ω as a length scale, U0 the velocity amplitude as a velocity scale,
and ρ0c

2 for pressure, we obtain from equations (1.3) and (1.1)

∂u

∂t
+ εu

∂u

∂x
= −

1

ε

∂p

∂x
+ 4

3
δ
∂u

∂x
,

∂ρ

∂t
+ ε

∂u

∂x
= 0, (2.1)

where ε = U0/c � 1, δ = ωμ/ρ0c
2 � 1. Using the adiabatic linear relationship

between pressure and density (1.8), and combining the set of equations (2.1), we
obtain

∂2u

∂t2
−

∂2u

∂x2
− 4

3
δ

∂3u

∂x2∂t
= −ε

∂

∂t

(
u
∂u

∂x

)
(2.2)

Now, if we expand u(x, t) in powers of ε,

u(x, t) = u0(x, t) + εu1(x, t) + ε2u2(x, t) · · · ,

then the leading-order form of equation (2.2) is

∂2u0
∂t2

−
∂2u0
∂x2

− 4

3
δ
∂3u0
∂x2∂t

= 0. (2.3)

This has the solution
u0(x, t) = e−2δx/3 cos(x− t), (2.4)

for a beam originating at x = 0. Not considering the nonlinear term in equation (2.2)
as a Renolds stress, then we may consider its time-average as the net force,

−

〈
εu0

∂u0
∂x

〉
= 1

3
εδe−4δx/3, (2.5)

where 〈cos2(x− t)〉 = 1

2
has played in.

11



12 2. Singular Perturbation Analysis

2.2 Rayleigh Streaming

This development is based on the reviews by Riley [21, 22], following which, we write
equation (1.3) for an incompressible fluid in the form

∂u′

∂t
−u

′
×ζ ′

= −
1

ρ
∇

(
p+

1

2
u′

·u
′

)
+ F

′ + ν∇
2
u

′
, (2.6)

where the primes are introduced to denote dimensioned quantities. In addition, we
are using the kinematic viscosity ν = μ/ρ, and we have introduced F ′ as a body force
per unit mass. With a as a length scale, F0 as a typical body force, and U0 = F0/ω
as velocity, we nondimensionalize as follows:

F = F ′/F0, x = x′/a, t = ωt′, u = u/U0, ζ = aζ′/U0.

Using these parameters, and taking the curl of equation (2.6) to eliminate the terms
within the ∇ operator, we obtain

∂ζ

∂t
− ε∇×(u× ζ) =

ε

R
∇

2ζ, (2.7)

where ε = U0/ωa, R = U0a/ν, and ∇× F is eliminated on account of being consid-
ered conservative.

For the purpose of illustration, we consider a simple two-dimensional case (see
Riley [22, 21]) so that

ζ =∇× u = (0, 0, ζ) with ζ = −∇2ψ, (2.8)

where ψ(x, y) is the stream function defined by

u(x, y, t) =∇×(0,0, ψ(x, y, t)).

As a result, equation (2.7) becomes

∂ζ

∂t
+ ε(u · ∇)ζ =

ε2

Rs

∇
2ζ, (2.9)

where Rs = εR is the streaming Reynolds number.

2.2.1 Solution by Perturbation

For ε� 1, a perturbation expansion of the type

u(x, y, t) = u0(x, y, t) + εu1(x, y, t) + ε2u2(x, y, t) + · · ·

ζ(x, y, t) = ζ0(x, y, t) + εζ1(x, y, t) + ε2ζ2(x, y, t) + · · ·

ψ(x, y, t) = ψ0(x, y, t) + εψ1(x, y, t) + ε2ψ2(x, y, t) + · · · (2.10)
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Since the applied force is considered conservative, the leading-order flow can be re-
garded as irrotational (−∇2ψ0 = ζ0 = 0). Further, considering the applied force
to have an oscillatory character, F (x, t) = f (x)eit, the leading-order solution may
be written as ψ0(x, y, t) = ψ0f (x, y, t)eit, where ψ0f (x, y, t) is the stream function
corresponding the force f . Near the boundary y = 0, there is a slip velocity

u(x, y, t) =
∂ψ(x, y, t)

∂y
= U (x)eit at y = 0. (2.11)

To deal with the flow field at the boundary (and satisfy the no-slip condition), we
define inner variables in the Stokes layer,

ψ =
(

2

Rs

)1

2

εΨ, y =
(

2

Rs

) 1

2

εη, (2.12)

leading to the following form of the vorticity equation (2.9),

∂

∂t

(
∂2Ψ

∂η2

)
− ε

∂ (Ψ, ∂2Ψ/∂η2)

∂(x, η)
= 1

2

∂4Ψ

∂η4
+O

(
ε2
)
. (2.13)

Upon expanding this inner variable in the same form as (2.10),

Ψ(x, η, t) = Ψ0(x, yη, t) + εΨ1(x, η, t) + ε2Ψ2(x, η, t) + · · · , (2.14)

we have for the leading order,

∂

∂t

(
∂2Ψ0

∂η2

)
= 0, (2.15)

with the classical Stokes-layer solution,

Ψ0(x, y, t) = U (x)
[
η − 1

2
(1 − i)

{
1 − e−(1+i)η

}]
eit, (2.16)

where, as η→∞, the solution approaches the slip-velocity condition given in equation
(2.11).

Next, to O(ε), from equations (2.13) and (2.14), we obtain

1
2

∂4Ψ1

∂η4
−

∂

∂t

(
∂2Ψ1

∂η2

)
=

∂ (∂2Ψ0/∂η2,Ψ0)

∂(x, η)
(2.17)

In spite of the oscillatory character of the flow field, we can expect nonzero time-
average contribution from the term on the right-hand side when real parts of the
solutions are used. This is because it involves the products leading to sin2 t and
cos2 t types of terms which have a nonzero mean. If we are concerned only with the
time-averaged part, we can decompose Ψ1(x, η, t) into steady ans unsteady parts, i.e.,

Ψ1(x, η, t) = Ψ(u)
1 (x, η, t) + Ψ(s)

1 (x, η), (2.18)
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where the superscripts (u) and (s) refer to unsteady and steady parts, respectively.
Taking the time-average of equation (2.17), we obtain

1
2

∂4Ψ(s)
1

∂η4
=

〈
∂ (∂2Ψ0/∂η

2,Ψ0)

∂(x, η)

〉
. (2.19)

On the right-hand side, the x-dependence will emanate from U (x) in the expression
for Ψ0 in equation (2.16). This will contain terms involving U(x) and U ′(x), as well
as their complex conjugates, U ∗(x) and U∗′(x). The solution to equation (2.19) can
be written as

Ψ
(s)
1 (x, η) =

d

dx
(UU ∗)f (η) + U∗

dU

dx
g(η). (2.20)

The successive integration of equation (2.19), requiring no-slip at the surface (η = 0)
and boundedness as η →∞, is

∂Ψ(s)
1 (x, η)

∂η
=

1

2

d

dx
(UU ∗)

(
e−η sin η + 1

4
e−2η − 1

4

)

−U ∗
dU

dx

[{
1
2
(1 + i)η + i− 1

2

}
e(1−i)η

−
1
4
ie−2η − 3

2
i+ 1

2

]
. (2.21)

This represents the x-component (i.e., tangential) of the streaming velocity within
the Stokes layer. The interesting aspect here is that velocity continues beyond the
Stokes layer, i.e.,

lim
η→∞

⎡
⎣Re

⎛
⎝∂Ψ

(s)
1 (x, η)

∂η

⎞
⎠
⎤
⎦ = −3

2

[
(1− i)U ∗

dU

dx
+ (1 + i)U

dU∗

dx

]
= ue. (2.22)

This slip velocity is considered to be the driving mechanism for steady streaming in
the bulk. The structure of this outer streaming is considered next.

2.2.2 Stokes Drift

Again, following Riley [22, 21], and taking the perturbation expansions (2.10) together
with equation (2.9), to O(ε2), we obtain

∂ζ2

∂t
= − (u0·∇) ζ

(s)
1 , which integrates to ζ2 = −

[(∫
t

u0 dt

)
·∇

]
ζ s1. (2.23)

Next, to O(ε3), we have

1

R
s

∇
2ζ

(s)
1 − (u1·∇) ζ(s)1 =

∂η3

∂t
+ (u0·∇) ζ2, (2.24)

which, upon taking the time average yields

1

Rs

∇
2ζ

(s)
1 −

(
u

(s)
1 ·∇

)
ζ
(s)
1 = 〈(u0·∇) ζ2〉 . (2.25)
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With the use of equation (2.23) here leads to

〈(u0·∇) ζ2〉 =
〈(∫

t

u0 dt

)
·∇u0

〉
·∇ζ

(s)
1 = (ud·∇) ζ(s)1 , (2.26)

where

ud =
〈(∫

t

u0 dt

)
·∇u0

〉
(2.27)

is the Stokes drift velocity. Now, by defining u(s)
1 = u

(s)
L

+ud, we may write equation
(2.25) as

1

Rs

∇
2ζ

(s)
1 −

(
u

(s)
L

·∇

)
ζ
(s)
1 = 0, (2.28)

where, as Riley [22] has pointed out, the vorticity on the outer region is convected
with the mean Lagrangian velocity, and R

s
serves as a streaming Reynolds number.

Using the development in this section, it is possible to formally obtain the results
for the Rayleigh problem discussed in Chapter 1. We therefore reconsider the velocity
field given earlier by equation (1.18) on page 9,

u = (sin(akx) cos t, 0). (2.29)

By comparing with equation (2.11), we may identify U(x) as

U(x) = sin akx. (2.30)

Using this in equation (2.22), we obtain

ue = −
3

8
Re [(1 − i)ak sin akx cos akx+ (1 + i) sin akx cos akx] = −3

8
sin 2akx (2.31)

With this velocity applied at the wall (y = −1, in scaled variables), and symmetry
about y = 0, together with Rs � 1 in (2.28), the result (1.20) can be derived.



16 2. Singular Perturbation Analysis



Chapter 3

Streaming with Sound Waves

Interacting with Solid Particles I

Streaming phenomenon commonly occurs when particles interact with high-frequency
sound waves. This type of interaction is very common with acoustic levitation devices.
Such devices are used for containerless processing, and applications include noncon-
tact trapping of cells and particle-based assays in continuous flow microsystems. For
example, an acoustic standing wave is generated in etched glass micro-channels by
miniature ultrasonic transducers, and particles or cells passing the transducer can
be retained and levitated in the center of the channel without any contact with the
channel walls [3]. The potential of ultrasonic standing wave fields to facilitate viral
transduction rate has been demonstrated by Lee & Peng [12]. Under acoustic expo-
sure, suspended cells move to the pressure nodal planes first and form cell clusters.
Then, viruses circulated between nodal planes use the pre-formed cell clusters as the
nucleating sites to attach on. In the past, we have made several macroscale applica-
tions including non-contact thermophysical property measurement of liquids [16, 17].
The suspension of liquid drops is addressed in a later chapter.

3.1 Acoustic Levitators

A typical desktop levitator is shown in Figure 3.1. The main physical principle
involved here is that the acoustic field provides the radiation pressure necessary to
levitate a liquid drop in a gravitational field. The studies on the effects of radiation
pressure on spheres and disks goes as far back as the 1930. Some of the earliest
theoretical studies were King [8, 9]. With the application of this principle, ultrasound
levitators have been in use for many years in ground-based experiments (as opposed
to space-based). Since widespread application of levitation systems in the 1980 and
the 90s, there has been an interest in understanding the fluid-flow fundamentals
associated with these systems. Some of the earlier work to characterize this flow
include the developments of Lee & Trinh. In one of their unreported works includes
the outer streaming flow streamlines associated with a levitation system. This is

17
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Figure 3.1: Ultrasound levitation apparatus.
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Figure 3.2: (a) Visualized streaming flow [25]; (b, c) Outer streaming calculations
(enclosed levitator)

given in Figure 3.2.
As discussed in Chapters 1 and 2, if a body of typical dimension a oscillates

with velocity U∞ cos(ωt) in a viscous fluid and ε = U∞/ωa � 1, then, although
the leading order solution is oscillatory, higher order terms include not only higher
harmonics but steady contributions to the velocity. Following earlier discussion, this
can be explained mathematically by existence of the nonlinear terms which may have
steady nonzero component. For high frequency, we apply the the condition ε � 1
which implies that the amplitude of the oscillation is small compared with a. The
existence of such steady streaming was first pointed out by Rayleigh [18] in his work
on Kundt’s dust tube and was later studied in a boundary layer context by Schlichting
[23] who considered flows with the additional constraint |M |2 = ωa2/ν � 1, where ν
denotes the kinematic viscosity of the fluid. Here, the parameter |M | is also known as
the Womersley number with the notation α. For such a flow it is now well established
that the first order fluctuation vorticity is confined to a shear-wave region of thickness
O(ν/ω)1/2 beyond which steady velocities O(εU

∞
) persist. Riley [20] has considered

the case of an oscillating sphere for both |M | � 1 and 0 < |M | < 1. Lee & Wang [11]
considered an oscillating sphere slightly displaced from the antinode of a standing
wave for |M | � 1. Their analysis relied on the tangential velocity calculation based
on an analytical algorithm.

One of the items of interest is the information about the characteristics of the
levitation process. The theory is useful in overcoming some of experimental problems
by providing suitable direction. For example, presently with acoustic levitation there
is a residual flow field including solid-body rotation for drops. This problem needs
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node
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node

Figure 3.3: Schematic of a spherical particle positioned at the velocity antinode of a
standing wave.

to be solved and detailed understanding of the flow studies would be beneficial. For
levitation under zero-gravity conditions, the drop assumes an equilibrium position at
the velocity antinode when the external medium is a gas. When the fluid-particle
phase has higher compressibility than the external phase (e.g., a gas bubble in a
liquid), the equilibrium position is at the velocity node. While the antinode solution
has been available from Riley’s [20] classical work, the node solution is relatively more
recent. This aspect will be discussed in the next chapter.

For a levitated spherical particle positioned at the velocity antinode (see Figure
3.3), Riley’s solution [20] of a vibrating sphere in an otherwise quiescent fluid can
be accommodated for a/λ = aω/c � 1, i.e., when the particle size is small when
compared with the wavelength of the standing wave. In the next section, we shall
provide Riley’s solution [20].

3.2 Solid Sphere at the Velocity Antinode:

Riley’s Solution

For this development, we rely on Riley [20] who gave the solution for an oscillating
sphere in an otherwise quiescent infinite fluid medium. As mentioned, the solution is
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applicable to to a small sphere positioned at the velocity antinode of a standing wave
provided a� λ, i.e., the size of the sphere is small compared to the wavelength. We
briefly discuss Riley’s [20] solution since it forms a basis for various developments in
this class of problems. The following dimensionless parameters are relevant:

R =
U
∞
a

ν
M 2 =

iωa2

ν
and

R

|M |2
= ε =

U
∞

ωa
� 1. (3.1)

While Riley [20] considered both |M | � 1 and |M | � 1, the latter case (high fre-
quency) is the one relevant to ultrasound levitation.

For a standing wave with velocity

uz = U∞ cos kzeiωt, (3.2)

the local velocity in the neighborhood of the antinode (z = 0) is

uz = U
∞

(
1 − k2z2 · · ·

)
eiωt. (3.3)

With a small particle at the antinode, the surrounding field may just be taken as the
first term uz = U∞e

iωt, whereby Riley’s [20] solution is applicable.

3.2.1 Equations of Motion

By scaling the flow parameters as follows:

u
∗ =

u

U
∞

, ψ∗ =
ψ

U
∞
a2
, x

∗ =
x

a
, and τ = ωt, (3.4)

and dropping the asterisks, the Navier—Stokes equation of motion, in the stream
function formulation may be written as

∂

∂τ

(
D2ψ

)
+ ε

[
1

r2
∂ (ψ,D2ψ)

∂(r, μ̄)
+

2

r2
D2ψ Lψ

]
=

1

|M |2
D2ψ (3.5)

where

D2 =
∂2

∂r2
+

(1 − μ̄2)

r2
∂2

∂μ̄2
,

L =
μ̄

(1− μ̄2)

∂

∂r
+

1

r

∂

∂μ̄
,

and μ̄ = cos θ. The Reynolds number R and frequency parameter M are defined as

R = U∞a/ν and M 2 = iωa2/ν, (3.6)

respectively.
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The stream function ψ is related to the velocity components as follows

ur = −
1

r2
∂ψ

∂μ̄
and uθ = −

(1 − μ̄2)
−

1

2

r

∂ψ

∂r
. (3.7)

With this formulation the continuity condition for an incompressible fluid is satisfied.
The boundary conditions are

ψ =
∂ψ

∂r
= 0 on r = 1 (3.8)

and
ψ ∼ 1

2
r2(1 − μ̄2)eiτ as r→∞. (3.9)

Here and throughout, we have chosen M
√
2/|M | = (1 + i) and ε is defined as

ε = R|M |−2 � 1.

The special case Rs = εR � 1 is considered here and Riley’s [20] development is
summarized next.

3.2.2 Solution

For |M | � 1, the vorticity, generated at the sphere, is confined to a thin ‘shear-wave’
layer of thickness O(|M |−1). Outside this thin layer the flow field is described by

|M |2
∂(D2ψ0)

∂τ
= D4ψ0. (3.10)

The solution for this is expressed by the irrotational field

ψ0 ∼
(
1

2
r2 −

1

2r

)
(1 − μ̄2)eiτ , (3.11)

where it should be noted that both sides of (3.10) vanish independently since D2ψ0 =
0. Within the shear-wave layer, the leading-order solution is

Ψ0 ∼ 3
2

{
η − 1

2
(1− i)

[
1− e−(1+i)η

]}
(1− μ̄2)eiτ , (3.12)

where

η = (r − 1)
|M |√

2
(3.13)

and

Ψ =
R

1

2
s ψ

ε
√
2
. (3.14)

where Rs = εR is the streaming Reynolds number. An inner layer expansion of the
type

Ψ = Ψ0 + εΨ1 +O(ε2) (3.15)
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is considered. The first order term may be decomposed into steady and unsteady
components in the form

Ψ1 =
9

2

[
ζ20(η) + ζ22(η)e

iτ
]
μ̄(1− μ̄2), (3.16)

where ζ20 and ζ22 have been found to be

ζ20 =
1

16
e−2η + 5

4
e−η cos η + 3

4
e−η sin η − 1

2
ηe−η sin η − 21

16
+ 5

8
η, (3.17)

ζ22 =
9

32
(2

1

2
− 1)(1 + i)−

(
9
32

)
2
1

2 (1 + i)e−(1+i)η
√
2 + 1

4
(1 + i)e−(1+i)η

+ 1
32
(1 + i)e−2(1+i)η

−

1
2
ie−(1+i)η. (3.18)

At the edge of the shear-wave region (η →∞),

Ψ ∼ 3
2

[
η cos τ −

(
1
2

)√
2 cos

(
τ − 1

4
τ
)]

+ 9
32
ε
[
(−21 + 16η) + 9

2

(
2 −

√
2
)
cos

(
2τ + 1

4
π
)]
μ̄(1 − μ̄2) +O(ε2).(3.19)

For the outer region where (r − 1) = O(1), stream function is expanded as

ψ = ψ0 + εχ, (3.20)

where ψ0 is fiven by equation (3.11) and χ = χ(r, μ̄, τ, ε) satisfies

+Rs

∂

∂τ

(
D2χ

)
+ ε

(
Rs

r2

)[
∂

∂r
(ψ0 + εχ)

∂

∂μ̄

(
D2χ

)
− ∂

∂μ̄
(ψ0 + εχ)

∂

∂r

(
D2χ

)

+2L (ψ0 + εχ)D2χ

]
= ε2D4χ.(3.21)

With the expansion of χ as

χ = χ1 + εχ2ε
2χ3 + · · · , (3.22)

and substitution into equation (3.21) yields

∂D2χ1

∂τ
= 0. (3.23)

This may be decomposed into steady and unsteady components in the form

χ1 = F1(r, μ̄) +G1(r, μ̄)φ(τ ), (3.24)

where G1(r, μ̄) satisfies
D2G = 0, (3.25)

and φ(τ) is determined from matching as

φ(τ ) = −

⎛
⎝ 3

2R
1

2
s

⎞
⎠ cos

(
τ − 1

4
π
)
. (3.26)
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The solution for G1(r, μ̄) is found to be

G1(r, μ̄) =
(1− μ̄2)

r
. (3.27)

With a lot of detailed calculations [20] through the equations for χ2 and χ3, the
differential equation for F1(r, μ̄) is found to be

D4F1 = 0, (3.28)

with the solution

F1(r, μ̄) =
45

32

(
−

1

r2
+ 1

)
. (3.29)

The solution exhibits a typical steady streaming flow field as shown in Figure 3.4. Here
the thin recirculation region (Stokes layer) is exaggerted for clarity. The important
aspect of this flow is the existence of a steady component arising from its nonlinear
character.

This development has been extended to the case of fluid sphere by Zhao et al [26]
and some interesting observations have been made. This is discussed in Chapter 5. In
the next chapter, we deal with a particle placed at the velocity node of the standing
wave.
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Figure 3.4: The streaming flow pattern associated with the steady flow in the case
of |M |2 � 1, and Rs � 1. The closed loop is a feature of the shear-wave layer.
Reproduced from [20].
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Chapter 4

Streaming with Sound Waves

Interacting with Solid Particles II

In the discussion here, the focus is on the analysis of solid sphere being placed at
the velocity node of the wave, which leads to an important result for calculating the
streaming when the sphere is placed between the velocity node and the antinode of
the wave. In this development, use will be made of the existing antinode solution of
Riley [20] and the present node solution through a nonlinear combination. Although
Lee & Wang [11] have considered this kind of problem, their result depends on an
algorithm for calculating the tangential velocity on the edge of the recirculating shear
layer. A more rigorous development of the flow field has been carried out [19]

4.1 Solid Sphere at the Velocity Node

The outer streaming around a solid sphere in plane standing wave is calculated with
the following procedure. We choose axially symmetric spherical polar coordinates
(r, θ) fixed in the body of the sphere such that the radial distance r is measured from
the center of the sphere and θ = 0 coincides with the axis of oscillation. In this case
the equation governing the steady flow in the outer region is Stokes’ equation.

For the standing wave described in equation (3.2), if the origin is shifted the node,
the undisturbed flow is

uz = −U∞ sin kzeiωt, (4.1)

and the velocity near the node (z = 0) is

uz = −U
∞

(
kz − 1

6
k3z3 · · ·

)
eiωt. (4.2)

For a small sphere at the node, the first term in the expansion should suffice. Thus the
velocity description for the ‘far field’ is U∞kzeωt. With the same dimensionless para-
meters as in equations (3.4) and (3.6), the flow description is given by the momentum
equation (3.5). At the surface of the sphere (r = 1), the no-slip boundary conditions
given by equation (3.8) have to be satisfied. In terms of a velocity potential, the

27
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far-field conditions take the form

ϕ
∞

=
U
∞

k

(
1 − 1

2
k2r2(1− μ̄2) + · · ·

)
eiωt, (4.3)

4.1.1 Equations of Motion

Following equations (1.1) and (1.3) developed in Chapter 1, and applying the scaling,

u
∗ =

u

U∞
, ψ∗ =

ψ

U∞a
2
, ϕ∗ =

ϕ

U∞a
, x

∗ =
x

a
,

τ = ωt, p∗ =
p

p0U∞ωa
, ρ∗ =

ρc2

ρ0U∞ωa
, and ∇

∗ = a∇,

and dropping the asterisks, we obtain the following:
continuity:

(ka)2
∂ρ

∂τ
+∇ · u+ ε(ka)2∇·ρu (4.4)

momentum:

[
1 + ρε(ka)2

] ∂u
∂τ

+ ε
[
1 + ρε(ka)2

]
u ·∇u = −∇p+

1

|M |2
∇2
u (4.5)

The boundary conditions are no-slip on the surface

u = 0 at r = 1, (4.6)

and in the far-field,

uz = −kazeiτ , (4.7)

or equivalently, in the form of a velocity potential,

ϕ∞ =
1

ka

[
1 − 1

3
(ka)2r2P2)(μ̄)−

1

6
(ka)2r2

]
eiτ . (4.8)

4.1.2 Solution

Once again, we apply the perturbation procedure,

u = u0 + εu1 +O(ε2), (4.9)

p = p0 + εp1 +O(ε2) (4.10)

ρ = ρ0 + ερ1 +O(ε2) (4.11)
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The Leading-Order Solution

Using the obove perturbation expansion procedure in the momentum equation (4.5),
we obtain

∂u0

∂τ
= −∇p0, (4.12)

which, according to our development in Chapter 1, corresponds to ittotational flow,
and may be expressed as a velocity potential

u0 =∇ϕ0, (4.13)

and it is not difficult to see that

p0 = −
∂ϕ0

∂τ
. (4.14)

This is applicable to the far-field so that with the use of (4.15),

p∞ = ρ∞ = −
∂ϕ∞

∂τ
= −

i

ka

[
1− 1

3
(ka)2r2P2)(μ̄)−

1

6
(ka)2r2

]
eiτ . (4.15)

From the continuity equation (4.4), the leading order solution u0 satisfies

(ka)2
∂ρ0

∂τ
+∇ · u0 = 0. (4.16)

Maintaining order in ka, it is not difficult to see that only the term (−i/(ka)) eiτ in
ρ0 is needed here. Therefore,

(ka)eiτ +∇ · u0 = 0, (4.17)

which may be written in the form of a potential function,

∇
2φ0 + (ka) = 0, (4.18)

where ϕ0 and φ0 are related by

ϕ0 = φ0(r, θ)e
iτ . (4.19)

Now, applying zero normal velocity on the surface of the sphere, i.e.,

ur0 =
∂ϕ0

∂r
= 0 at r = 1, (4.20)

together with the far-field condition (5.22), we obtain

ϕ0 =
{

1

ka
−

1

3
ka

(
1

2
r2 +

1

r

)
−

1

3
ka

(
r2 +

2

3r3

)
P2(μ̄)

}
eiτ , (4.21)

and

p0 = ρ0 = −i
{

1

ka
−

1

3
ka

(
1

2
r2 +

1

r

)
−

1

3
ka

(
r2 +

2

3r3

)
P2(μ̄)

}
eiτ . (4.22)
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In the boundary layer, we write the velocity field in terms of normal (radial) and
tangential components,

u
b = ub

rr̂ + ub
θθ̂, (4.23)

As usual, with |M |2 � 1, the vorticity generated at the surface of the sphere, is
confined to a thin shear-wave layer of thickness O(|M |−1), we scale the inner variables
inside the shear-wave layer as

η = (r − 1)
|M |√
2
, and ub

η =
|M |√
2
ub
r. (4.24)

Again, perturbing in powers in ε,

u
b = u

b
0
+ εub

1
+O(ε2), (4.25)

pb = pb
0
+ εpb

1
+O(ε2), (4.26)

and
ρb = ρb

0
+ ερb

1
+O(ε2), (4.27)

and using these expansions (4.25)-(4.27) in momentum equation (4.5), we have for
the leading-order normal and tangential velocities,

∂ub
r0

∂τ
= −∂pb

0

∂r
= −|M |√

2

∂pb
0

∂η
(4.28)

∂ub
θ0

∂τ
= −∂pb

0

∂θ
+

1

2

∂2ub
θ0

∂η2
, (4.29)

respectively. As we know, the frequency parameter |M | � 1, and from equa-
tion (4.28), we may deduce that the leading-order acoustic pressure pb

0
in the boundary

layer is a function of θ and τ only. Therefore, ∂pb
0
/∂η = 0, and using this information

in equation (4.22), we find

pb
0
= ρb

0
= p0|r=1 = − i

ka

[
1 − 1

2
(ka)2 − 5

9
(ka)2P2(μ̄)

]
eiτ . (4.30)

With use of equation (4.30) and the boundary condition

ub
θ0 = 0 as η = 0, (4.31)

in equation (4.29), we obtain the differential equation for ub
θ0 which, when solved,

yiels
ub
θ0 =

5
3
(ka) sin θ cos θ

(
1 − e−(1+i)η

)
eiτ . (4.32)

Then, from the continuity equation (4.4), we obtain the equation for the leading-order
normal velocity in the boundary layer ub

η0 as

(ka)2
∂ρb0
∂τ

+
∂ub

η0

∂η
+

1

sin θ

∂

∂θ

(
ub
θ0 sin θ

)
= 0. (4.33)
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Next, the boundary condition

ub
η0 = 0 at η = 0, (4.34)

leads to the solution of ub
η0 as

ub
η0 =

{
−kaη + 10

3
(ka)

[
−η + 1

2
(1− i)

(
1− e−(1+i)η

)]
P2(μ̄)

}
eiτ . (4.35)

Here, it should be noted that the first term −kaηeiτ represents the compressibility in
the boundary layer.

The First-Order Solution [O(ε)]

As with most problems in this class, the first order solution is much more complex
than the leading order. Since our interest lies in understanding the steady streaming
outside the sphere, we only consider the steady-state solutions here. Therefore, in
this section, all the first order variables are time-independent.

It is not difficult to show that the first-order velocity field is incompressible [27],
i.e., ∇ · u

b

1
= 0. Making use of equations (4.25), (4.26) and (4.27) in the momentum

equation (4.5), and equating both sides in the order of ε, we have

〈
ρb
0
(ka)2

∂ub

η0

∂τ

〉
+

〈
ub
η0

∂ub
η0

∂η

〉
+

〈
ub
θ0

∂ub
η0

∂θ

〉
= −

|M |2

2

∂pb
1

∂η
+

∂2ub
η1

∂η2
, (4.36)

for the first-order normal velocity in the boundary layer, and

〈
ρb
0
(ka)2

∂ub
θ0

∂τ

〉
+

〈
ub
η0

∂ub
θ0

∂η

〉
+

〈
ub
θ0

∂ub
θ0

∂θ

〉
= −

∂pb
1

∂θ
+

1

2

∂2ub
θ1

∂η2
, (4.37)

for the first-order tangential velocity in the boundary layer. Recognizing once again
that |M |2 � 1, whereby in equation (4.36), the pressure derivative term is dominant.
Thus,

∂pb
1

∂η
= 0, (4.38)

which means the first order time-independent pressure in the boundary layer is a
function of θ only. Since the steady flow in the boundary layer is incompressible, the
velocity field can be written in terms of the stream function ψb

1
so that

ub
r1 =

1

r2 sin θ

(
∂ψb

1

∂θ

)
, (4.39)

and

ub
θ1 = −

1

r sin θ

(
∂ψb

1

∂r

)
. (4.40)
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Using the stream-function form in equation (4.40) in equation (4.37), with the limit
ψb

1
= o(η2), together with the boundary conditions,

ψb

1
= 0 at η = 0, and

∂ψb

1

∂η
= 0 at η = 0,

we obtain the solution for ψb

1
as

ψb

1
= −

√
2

|M |(ka)
2
{(

25

72
e−2η + 10

3
e−η cos η + 35

18
e−η sin η

+5

9
ηe−η sin η + 25

12
η − 265

72

)
μ̄(1 − μ̄2) +

(
−

25

36
e−2η − 100

9
e−η cos η

−

125

18
e−η sin η − 25

6
ηe−η sin η − 50

9
η + 425

36

)
μ̄3(1 − μ̄2)

}
. (4.41)

The perturbation solution (4.41) represents an inner solution, corresponding to the
shear-wave layer. For the outer region where (r − 1) = O(1), we need to construct
another asymptotic solution. Agai, it is not difficult to demonstrate incompressibility
[27] so that ∇ · u1 = 0. Once again, we introduce the stream function ψ1, for the

outer region this time, such that

ur1 =
1

r2 sin θ

(
∂ψ1

∂θ

)
and uθ1 = −

1

r sin θ

(
∂ψ1

∂r

)
. (4.42)

Equating coefficients of powers of ε in the momentum equation (5.18), and using the
above stream function relationship, we obtain the Stokes flow equation

D4ψ1 = 0, (4.43)

where D2 is the standard Stokes operator. After asymptotic matching, we obtain the
following expression for ψ1:

ψ1 = (ka)2 25

168

(
−r−2 + 1

)
μ̄(1− μ̄2)

+ (ka)2 25
63

(
−r−4 + r−2

)
(7μ̄3

− 3μ̄)(1 − μ̄2), (4.44)

again demonstrating the persistence of streaming outside the shear-wave layer.

Discussion

The streaming flow field in the outer region is depicted in Figure 4.1. Here, unlike
the sphere at the velocity antinode, the outer region has closed vortex around the
equatorial region. The recirculating part of the Stokes layer does not cover the entire
sphere but just the equatorial belt. Over the remaining region in the Stokes layer,
the outer flow continues into the Stokes layer. In order to see this detail, we have
shown the Stokes-layer region on a stretched scale. This is shown in Figure 4.2.
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Figure 4.1: Streaming in the outer region for a sphere placed at the velocity node [27]

Figure 4.2: Detailed flow field in the Stokes layer on the surface with a stretched
radial scale. The fluid motion is clockwise in the upper left region and the lower
closed vortex, and counterclockwise elsewhere [27]
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4.2 Streaming Around a Sphere Placed Between

Nodes

A particle levitated in a gravity field would position itself between the velocity node
and the antinode. The analysis of a solid sphere present between nodes has also been
carried out. However, the details of calculation will not be presented since these can
be easily derived from the liquid-drop cases (discussed in the next chapter) when
the infinite-viscosity limit is taken. The basis of the analysis is the expansion of the
standing wave for which we expand the velocity u

∗

z
such that [19]

u
∗

z
= U∞ cos(kz∗)eiωt

∗

= U∞ cos(k̄z)eit

= U∞

[
cos k̄z0 − k̄(z − z0) sin k̄z0 +O(k̄2(z − z0)

2)
]
eit, (4.45)

where k̄ = ka is the dimensionless wavenumber. This right-hand side represents the
local velocity in the neighborhood of the sphere centered at z = z0, the dimensionless
displacement of the center of the sphere from the velocity antinode. The expansion
splits the far-field velocity into a solution about the velocity node and the antinode.
While this combines linearly, the streaming part is nonlinear and there are terms in
addition to the node and the antinode solution. This procedure is detailed in the
next chapter for the liquid drop. However, the solid-sphere results are relevant here,
and some of them are presented.

We have found that the results obtained for solid-sphere case are consistent with
the outer solution of Lee & Wang [11] which allows for a slip velocity on the solid
surface. In Figures 4.3 through 4.7, we can see the streamlines for a solid sphere with
k̄ = 0.3. It is apparent that the asymmetry about the equator in the streaming pattern
when the sphere is away from the velocity antinode is because of the asymmetric
distribution of the undisturbed flow. There is stronger streaming on the velocity
antinode side where the fluid velocity tends to be higher. Away from the surface of
the sphere, the flow pattern does not depend onM of course, but on the displacement
k̄z0. It is noted that there is a transition value k̄z0 = K0 (with 5π/16 < K0 < 3π/8)
in the flow pattern between. When k̄z0 < K0, there exists a thin recirculating region,
limited to the Stokes layer adjacent to the surface, quite similar to that for a solid
particle at the velocity antinode. This region is quite thin and not clearly visible in
the Figures 4.3 through 4.5. However, when k̄z0 > K0, larger vortices appear around
the north-pole region as shown in Figures 4.6 and 4.7.



4.2. STREAMING AROUND A SPHERE PLACED BETWEEN NODES 35

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 4.3: Streaming about a solid sphere displaced between velocity node and
antinode for k̄z0 = π/8, k̄ = 0.3, and M = 800 [19].
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Figure 4.4: Streaming about a solid sphere displaced between velocity node and
antinode for k̄z0 = π/4, k̄ = 0.3, and M = 800 [19].
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Figure 4.5: Streaming about a solid sphere displaced between velocity node and
antinode for k̄z0 = 5π/16, k̄ = 0.3, and M = 800 [19].
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Figure 4.6: Streaming about a solid sphere displaced between velocity node and
antinode for k̄z0 = 3π/8, k̄ = 0.3, and M = 800 [19].
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Figure 4.7: Streaming about a solid sphere displaced between velocity node and
antinode for k̄z0 = 7π/16, k̄ = 0.3, and M = 800 [19].



38 4. Streaming with Solid Particles II



Chapter 5

Acoustic Streaming with Drops

and Bubbles

So far our discussions have been on the streaming phenomenon coming about as an
oscillating fluid interacts with solid surface. From a fundamental standpoint, as well as
application to levitated drops, there is interest in studying the streaming phenomenon
when a standing wave interacts with a fluid-fluid interface. The results are very
interesting and show that there can be a marked difference in the characterization of
the streaming by simply allowing some degree of interfacial mobility. We consider here
first the case of a liquid drop placed at the velocity antinode. This result is derived by
generalizing Riley’s [20] classical results to a liquid drop. Since the derivation closely
follows Riley [20] whose results are repeated here in Chapter 2, we shall focus on just
the results of liquid-drop case. Furthermore, the more general case of a liquid drop
between nodes (given later in this chapter) covers the antinode case as a limit.

5.1 Liquid Drop at the Velocity Antinode

In this analysis, we present the internal flow in a liquid drop at the antinode of
a standing wave. The set of governing equation for calculating streaming around
a liquid sphere is the same as that for calculating streaming around a solid sphere.
However, at the interface, the continuity of velocity and shear stress have been applied.
We assume that medium outside the sphere is a gas. Parameters with (ˆ) represent
properties of liquid inside the sphere, and parameters without (ˆ) represent properties
of gas outside the drop.

Since
R

R̂
=

ν̂

ν
, and

|M |2

ˆ|M |
2
=
ν̂

ν
,

we have

|M |2

R
=

ˆ|M |
2

R̂
,

39
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With |M |2 � R, we may deduce that ˆ|M |
2

� R̂. Thus the leading-order stream
function for the liquid-drop region must also satisfy equation (3.10). In the notation
for the dispersed-phase variables, this is

ˆ|M |
2∂(D2ψ̂0)

∂τ
= D4ψ̂0. (5.1)

5.1.1 Solution by Singular Perturbation

Here we consider the case, where |M |2 � 1 and the liquid sphere is placed at the
velocity antinode of the wave, which is quite similar to that of Riley’s [20] problem.
We apply the perturbation expansions of the type given in equations (4.9)-(4.11).
After a lot of lengthy calculations, the results are obtained to the leading order and
O(ε).

Leading Order

ψ0 = 1

2

(
r2 −

1

r

)
(1 − μ̄2)eiτ (5.2)

Ψ0 =
[
C + 3

2
η + Fe−(1+i)η

]
(1− μ̄2)eiτ , (5.3)

for the gas region, and

ψ̂0 = [A∗r2 + C∗(
1

M̂r
− 1)eM̂r

−C∗(
1

M̂r
+ 1)e−M̂r](1− μ̄2)eiτ . (5.4)

where the standard notation for the outer and inner stream functions are used. The
‘hat’ (ˆ) refers to liquid-phase quantities. The following interface conditions apply:

• Velocity continuity:

ψ̂0|r=1 = Ψ0|η=0 = 0 (5.5)

∂ψ̂0

∂r
|r=1 =

∂Ψ0

∂η
|η=0 (5.6)

• Shear stress continuity:

[τrθ − τ̂rθ]r=1 = −

[
μ

r

sin θ

∂

∂r
(
1

r2
∂Ψ0

∂η
)− μ̂

r

sin θ

∂

∂r
(
1

r2
∂ψ̂0

∂r
)

]
r=1

= 0, (5.7)

where μ is the dynamic viscosity for gas and μ̂ is that for liquid.

Upon satisfying the boundary conditions (5.5), (5.6), and (5.7), we have

F = −C

A∗ = C∗

[ (
1

M̂
+ 1

)
e−M̂ −

(
1

M̂
− 1

)
eM̂

]

C∗ =
3
2
+ C(1 + i)

e−M̂( 3
M̂

+ 3 + M̂ ) + eM̂ (− 3
M̂

+ 3− M̂ )
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where ⎧⎨
⎩
−3λ[e−

ˆM( 3

M̂
+ 3 + M̂ ) + eM̂ (− 3

M̂
+ 3− M̂ )]

−

3
2
[e−M̂(− 6

M̂
− 6 − 3M̂ − M̂2) + eM̂( 6

M̂
− 6 + 3M̂ − M̂2)]

⎫⎬
⎭

C = ⎧⎨
⎩

(1 + i)[e−M̂ (− 6

M̂
− 6− 3M̂ − M̂2) + eM̂ ( 6

M̂
− 6 + 3M̂ − M̂ 2)]

+ λ(1 + i)(2 +M)[e−M̂( 3

M̂
+ 3 + M̂) + eM̂(− 3

M̂
+ 3− M̂)]

⎫⎬
⎭

and λ = μ/μ̂.
Solutions of inner and outer flow fields are obtained as follows:

ψ̂0 = C∗

[
r2( 1

M̂
+ 1)e−M̂ − r2( 1

M̂
− 1)eM̂

+ ( 1
M̂r
− 1)eM̂r

− ( 1
M̂r

+ 1)e−M̂r
]
(1− μ̄2)eiτ (5.8)

Ψ0 = (C +
3

2
η − Ce−(1+i)η)(1 − μ̄2)eiτ (5.9)

ψ0 =
1

2
(r2 −

1

r
)(1 − μ̄2)eiτ (5.10)

The result of ψ0 is the same as that of Riley’s solution for solid sphere.
Usually μ is much smaller than μ̂, and in this case λ� 1. With M̂ � 1, we can

simplify C as

C ≈
3λM̂ − 3

2
(3M̂ − M̂2)

(1 + i)(3M̂ − M̂2)− λ(1 + i)(2 +M)M̂

≈
3
2
M̂

−(1 + i)(M̂ + λM)
(5.11)

and

C∗ ≈ −
3
2
( 1
M̂
− 1

M̂+λM
)

eM̂
(5.12)

According to our assumption, ifM � 1 and M̂ � 1, we may see from equation (5.12)
that C∗ is quite small. In this case ψ̂0 → 0. That means flow inside the sphere is
very weak. This is owing to the recirculating Stokes layer in which there are opposing
velocities that require a very large shear in order to sustain substantial motion. Since
the system cannot afford sufficiently large shear stresses, the result is that the motion
remains weak.

In the solid-sphere limit, |M̂ | = 0, λ = μ/μ̂ = 0, and

C = −3
4
(1 − i)

and
Ψ0 =

3
2

{
η − 1−i

2
(1− e−(1+i)η)

}
(1 − μ̄2)eiτ .

Thus, for the solid sphere limit (μ̂/μ→∞), we recover Riley’s[20] solution of stream
function in the shear-wave layer.
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Solutions to O(ε)

To O(ε), we obtain only the time-independent parts of the flow field. These are

Ψ1(τ−indep) =
9

2

[
5

8
η −

|M |κη√
2(20 + 8κ)

− 21

16
+

1

16
e−2η +

5

4
e−η cos η

+
3

4
e−η sin η +

1

2
ηe−η sin η

]
μ̄(1− μ̄2), (5.13)

and

ψ̂1(τ−indep) =
9|M |κ√

2(80 + 32κ)

(
r3 − r5

)
μ̄(1− μ̄2). (5.14)

ψ1(τ−indep) =

(
−45

32
+

9|M |κ√
2(80 + 32κ)

)(
1

r2
− 1

)
μ̄(1− μ̄2). (5.15)

Discussion

The flow descriptions given by equation (5.13) and equation (5.15) show that these
inner and outer fields depend on the frequency parameterM . At the macroscale, many
of the levitation experiments, the wave frequency is 20− 40kHz, and the diameter of
the sphere is 3 − 8mm. For a gaseous medium outside the liquid drop, κ = 1/λ is
O(10−2). In this case, |M | ranges from 140 to 600, and we find that

9|M |κ√
2(80 + 32κ)

<
45

32
or |M | < 5

√
2(5 + 2κ)

2κ
.

The steady-state flow pattern outside the liquid sphere is quite similar to that of the
solid sphere obtained by Riley [20]. The shear layer in this case has recirculation (see
Figure 5.1 and 5.2). With increasing |M |, the parameter

B1 = −45

32
+

9|M |κ√
2(80 + 32κ)

(5.16)

in equation (5.15) vanishes and then reverses sign. At that point, the recirculation
in the shear layer ceases. The streamlines inside the layer merge with the outer ones
(see Figure 5.2).

While this theory that predicts the cessation of recirculation in the shear-wave
layer has been reported for over ten years now, there is still need for conclusive
experimental verification. In recent experiments [7], the strong dependence of the
internal and external flow characteristics on the liquid viscosity have been reported.
While we are still seeking detailed theoretical explanations for this phenomenon, we
should mention that the vorticity generated by the acoustic field interacting with an
interface is manifested in the form of recirculation (see Schlichting [23]). This takes
place when an acoustic field interacts with a solid surface. However, in the case of
a fluid surface, interfacial mobility is likely to reduce this effect. With decreasing
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Figure 5.1: Streaming about a drop at the velocity antinode with B1 < 1, for |M | =
200 and κ = 0.0156[26]

Figure 5.2: Streaming about a drop at the velocity antinode for B1 > 1, with |M | =
200 and κ = 0.0156 [26]
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drop-phase viscosity, the strength of the shear-wave layer recirculation diminishes
and could vanish when the parameter B1 in equation (50) is zero. The effect is
particularly pronounced because the thinness of the recirculating layer affords a great
deal of shear, and fluidity at the interface appears to mitigate that effect. It should
be remarked that at the cessation point, ψ1 also vanishes, and higher-order solutions
are needed for a valid description.

5.2 Liquid Drop Between Nodes

In this section, we discuss the flow field dealing with a liquid sphere in gas medium
displaced between the velocity node and the antinode in acoustic levitation. The
analysis is carried out for a high-frequency standing acoustic wave which is useful to
levitate particles in Earth gravity or to stabilize particles in low-gravity situations.
The drop is considered to have sufficient mass so that it occupies a stable position
in the acoustic field and it does not experience significant body oscillations. As in
previous chapters, we depend a great deal on the perturbation procedure based on
small-amplitude and high-frequency assumptions for the acoustic fields. We choose
axially symmetric spherical polar coordinates (r, θ) with the origin at the center of
the sphere. The z-axis passes through the center of the sphere and points along the
direction of vibration, and z = 0 represents the velocity antinode closest to the sphere,
while z = z0 is the center of the sphere. The following dimensionless parameters are
used:

|M |2 = ωa2/ν � 1, ε =
U∞
ωa
� 1, k̄ = ka and Rs = ε2|M |2 � 1,

where U
∞

is the velocity amplitude of the standing wave, ω is the frequency, ν is
the kinematic viscosity of the gas medium, a is the drop radius, k = ω/c is the
acoustic wavenumber, M is the frequency parameter, ε is the amplitude parameter
which is actually the reciprocal of the Strouhal number. The high-frequency and
small-amplitude case corresponds to M � 1 and ε � 1, respectively. Besides, we
assume that the particle size is much smaller than the acoustic wavelength, i.e., k̄� 1.
Furthermore, R

s
, the expected value of the Reynolds number for the resulting steady

streaming (the streaming Reynolds number [20]), is also assumed to be small. Since
the development closely follows the solid-sphere analysis, we shall dispense with much
of the details which are available in [19].

The flow parameters are scaled as follows:

u =
u
∗

U
∞

, ψ =
ψ∗

U
∞
a2
, r =

r∗

a
, z =

z∗

a
, ϕ =

ϕ∗

U
∞
a
,

t = ωt∗, p =
p∗

ρ∗0U∞ωa
, and ρ =

ρ∗c2

ρ∗0U∞ωa
,

where ρ∗
0
is the unperturbed medium density, c is the speed of sound, ρ∗ is the

density perturbation due to the acoustic wave, and p∗ is the acoustic pressure. The



5.2. LIQUID DROP BETWEEN NODES 45

flow field will be described by the stream function ψ∗ and the velocity potential
ϕ∗. The asterisks denote dimensioned variables while the dimensionless variables are
without asterisks. The dimensioned constants do not, however, have asterisks. The
dimensionless continuity and momentum equations are the same as equations (4.4)
and (4.5) but are repeated here with a slightly different notation.

k̄2
∂ρ

∂t
+∇ · u+ εk̄2∇·(ρu) = 0, (5.17)

and (
1 + ρεk̄2

) ∂u

∂t
+ ε

(
1 + ρεk̄2

)
u ·∇u = −∇p+

1

M 2
∇

2
u, (5.18)

respectively. By using adiabatic relation ρ∗ = p∗/c2 with c as the speed of sound, the
dimensionless acoustic pressure and density can be shown to be equal for γ = cp/cv �
1, i.e.,

p = ρ (5.19)

to the leading order.
As discussed in Section 4.2, a particle levitated in a gravity field would position

itself between the velocity node and the antinode. To consider such a problem, we
need to expand the standing wave velocity u∗z such that

u∗z = U∞ cos(kz∗)eiωt
∗

= U∞ cos(k̄z)eit

= U∞
[
cos k̄z0 − k̄(z − z0) sin k̄z0 +O(k̄2(z − z0)

2)
]
eit, (5.20)

represents the local velocity in the neighborhood of the sphere centered at (z = z0).
The first term in the expanded version of equation (5.20) is just the far-field velocity
for the situation when the sphere is at velocity antinode of a standing wave, and
the second term is the far-field velocity for the case when the sphere is positioned at
the node. The cases k̄z0 = 0 and k̄z0 = 1

2
π would correspond to cases of a sphere

placed at the velocity antinode and node, respectively. The displaced sphere problem
is a combination of the solutions about the node and the antinode, together with
additional nonlinear terms.

While the fluid within the Stokes layer near the surface of the sphere has vorticity
to meet the continuity conditions on the interface, the flow outside the layer behaves
irrotationally as in a sound field. This outer flow field can therefore be expressed as
a velocity potential,

u =∇ϕ. (5.21)

The dimensionless far-field potential function, corresponding to equation (4.45), takes
the form

ϕ
∞

=
[
1

k̄
sin k̄z0 + (z − z0) cos k̄z0 −

1

2
k̄(z − z0)

2 sin k̄z0 +O
(
k̄2

)]
eit

=
[
1

k̄
sin(k̄z0) + r cos(k̄z0)P1(μ̄)−

1

6
k̄r2 sin(k̄z0)

−

1

3
k̄r2 sin(k̄z0)P2(μ̄) +O

(
k̄2

) ]
eit, (5.22)
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where Pn(μ̄) denotes Legendre polynomials, and μ̄ = cos θ. With the spherical coordi-
nate system centered at z = z0, it should be noted that z−z0 = rμ̄. From momentum
equation (5.18), we have as before

∂u∞

∂t
= −∇p∞, (5.23)

and using equation (5.21), we obtain

p
∞

= ρ
∞

= −i

[
1

k̄
sin(k̄z0) + r cos(k̄z0)P1(μ̄)

−

1

6
k̄r2 sin(k̄z0)−

1

3
k̄r2 sin(k̄z0)P2(μ̄)

]
eit, (5.24)

where the real part applies.

5.2.1 Solution

In this section, the flow-field results of the analysis by singular perturbation using
ε = U∞/(ωa) � 1. As in the earlier section of this chapter, parameters with (ˆ)
represent properties of liquid inside the drop, and parameters without (ˆ) correspond
to the gas region outside the drop.

By applying the perturbation method, we expand the velocity, acoustic pressure
and density outside the boundary layer in powers of ε as follows:

u = u0 + εu1 +O(ε2), (5.25)

p = p0 + εp1 +O(ε2), (5.26)

and
ρ = ρ0 + ερ1 +O(ε2). (5.27)

These expansions are substituted into equations (5.17) and (5.18) to form a hierarchy
of equations in orders of ε. We treat here the leading order (O(1)) and O(ε).

Leading-Order Solutions

Outer Region The leading-order velocity potential ϕ0 takes the form

ϕ0 =
{
1

k̄
sin(k̄z0) + cos(k̄z0)

(
r + 1

2
r−2

)
P1(μ̄)

−

1

3
k̄ sin(k̄z0)

[(
r−1 + 1

2
r2
)
+
(
r2 + 2

3
r−3

)
P2(μ̄)

]
+O(k̄2)

}
eit. (5.28)

The leading-order acoustic pressure p0 and density ρ0 are then given by

p0 = ρ0 = −
∂ϕ0

∂t
= −i

{
1

k̄
sin(k̄z0) + cos(k̄z0)

(
r + 1

2
r−2

)
P1(μ̄)

−

1

3
k̄ sin(k̄z0)

[(
r−1 + 1

2
r2
)
+
(
r2 + 2

3
r−3

)
P2(μ̄)

]
O(k̄2)

}
eit. (5.29)
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In the liquid phase, the leading-order solution os

ψ̂0 = 0, (5.30)

implying no flow at all to the leading order. This also means that the boundary layer,
to this order, will satisfy the no-slip conditions as for a solid sphere.

Gas-Phase Stokes Layer In the boundary layer, we express the velocity as

u
b = ub

r
r̂ + ub

θ
θ̂, (5.31)

where ub

r
is the normal velocity, ub

θ
is the tangential velocity, and (r̂, θ̂) are unit

vectors. The solution is

ub

θ0
=

{
−

3
2
cos(k̄z0) sin θ + 5

3
k̄ sin(k̄z0) sin θ cos θ

} (
1 − e−(1+i)η

)
eit. (5.32)

and

ub
η0 =

{
3 cos(k̄z0)

[
η − 1

2
(1 − i)

(
1 − e−(1+i)η

)]
P1(μ̄)

− k̄ sin(k̄z0)
(
η + 10

3

[
η − 1

2
(1− i)

(
1− e−(1+i)η

)]
P2(μ̄)

)}
eit. (5.33)

Here, we notice that all the leading-order solutions, including velocity, pressure and
density, are just the linear combination of two groups of results, one is when the
sphere is placed at the velocity antinode, and the other one is at the node.

First-Order Solutions

Our interest is mainly in understanding the steady streaming outside the sphere.
We therefore consider here only the steady-state components of the solutions. The
results are

ub

θ1 = k̄ sin(k̄z0) cos(k̄z0)
{
sin θ

[
5

8
e−2η + 5

4
e−η cos η + 17

4
e−η sin η

+ 1

2
ηe−η (sin η − cos η) +Q1

]
+ sin θ cos2 θ

[
−

15

8
e−2η

−20e−η sin η + 25

4
e−η (η cos η − η sin η − sin η) +Q3

]}

+ cos2(k̄z0) sin θ cos θ
{

9

16
e−2η + 27

4
e−η sin η

+ 9

4
e−η (η sin η − η cos η + cos η) +Q2

}
+O(k̄2), (5.34)

where Q1, Q2, and Q3 are constants found to be

Q1 =
23

168

√
2Mμ − 15

8
, Q2 =

9

80

√
2Mμ − 45

16
, and Q3 = −15

56

√
2Mμ +

65

8
, (5.35)

Inside the drop, assuming that the Reynolds number is small, the steady streaming
satisfies Stokes equation, i.e.,

D4ψ̂1 = 0. (5.36)
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Here, ψ̂1 is the stream function s inside the drop is given by

ψ̂1 = k̄ sin(k̄z0) cos(k̄z0)
1

24

√
2Mμ

(
r2 − r4

)
(1 − μ̄2)

+ cos2(k̄z0)
9

160

√
2Mμ

(
r3 − r5

)
μ̄(1− μ̄2)

− k̄ sin(k̄z0) cos(k̄z0)
3

112

√
2Mμ

(
r4 − r6

)
(5μ̄2 − 1)(1 − μ̄2) +O(k̄2).(5.37)

It should be noted that this solution in the drop region is uniformly valid as there is
no internal Stokes layer.

The stream function in the boundary layer may be expressed as

ψb
1

= −
{
k̄ sin(k̄z0) cos(k̄z0)

[(
−

5

16
e−2η − 3e−η cos η − 7

4
e−η sin η

−

1

2
ηe−η sin η + 23

168

√
2Mμη − 15

8
η + 53

16

)
(1− μ̄2)

+
(
15

16
e−2η + 65

4
e−η cos η + 10e−η sin η

+ 25

4
ηe−η sin η + 65

8
η − 15

56

√
2Mμη − 275

16

)
μ̄2(1 − μ̄2)

]

+ cos2(k̄z0)
(
− 9

32
e−2η − 45

8
e−η cos η − 27

8
e−η sin η − 9

4
ηe−η sin η

+ 9

80

√
2Mμη − 45

16
η + 189

32

)
μ̄(1 − μ̄2)

}
+O(k̄2). (5.38)

This inner solution is valid only in the shear-wave layer, and to complete the analysis,
we must seek the steady streaming in the outer region as well, where

r − 1 = O(1).

In the limit of small streaming Reynolds number (Rs � 1) the outer streaming
satisfies the Stokes equation,

D4ψ1 = 0, (5.39)

To obtain the solution to this equation, the angular eigenfunctions are chosen to be
the same as the inner solution, ψb

1
, given by equation (5.38). The far-field behavior

of the solution requires the flow velocity to fade away. At the surface we require
matching with the Stokes-layer solution (5.38). Thus, we obtain

ψ1 = k̄ sin(k̄z0) cos(k̄z0)
[(

1

8
− 1

24

√
2Mμ

)(
r − 1

r

)
(1− μ̄2)

−
(
13

16
− 3

112

√
2Mμ

)(1
r
− 1

r3

)
(5μ̄2 − 1)(1 − μ̄2)

]

+ cos2(k̄z0)
(
45

32
− 9

160

√
2Mμ

)(
1− 1

r2

)
μ̄(1 − μ̄2) +O(k̄2). (5.40)

To sum it up, the internal circulation within the drop is defined by equation
(5.37), while the steady streaming in the gas medium is given by (5.38) for the Stokes
layer, and by (5.40) for the outer region. We note that the case of the solid sphere is
recovered in all these expressions by letting the liquid-phase viscosity go to infinity,
i.e., setting Mμ = 0.
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Figure 5.3: Streaming about a drop displaced between velocity node and antinode
for k̄z0 = π/4, k̄ = 0.3, and Mμ = 3.12,

5.2.2 Discussion

In the above analysis, we find that the leading-order solution is a linear combination of
the two groups of fundamental solutions corresponding to the sphere being placed at
the node and antinode, respectively, of a standing wave. At higher orders, nonlinear
effects become important and additional terms besides the two fundamental solutions
are needed for the proper description of the flow.

The leading-order oscillatory flow for a liquid sphere is essentially the same as for
a solid one, in view of the high inertia of the liquid as compared to the surrounding
gas medium. However, this is not the case for the steady streaming, when the differ-
ence between the liquid and the solid spheres may be appreciable. The effect of the
‘liquidity’ on the streaming is measured by the parameter Mμ. Typical flow patterns
associated with the steady streaming of liquid sphere displaced between velocity node
and antinode are displayed in Figure 5.3 through Figure 5.11. In these figures,
we plot the streamlines for k̄ = 0.3, and k̄z0 = π/4. Equation (5.38) contains three
terms that are linear in η, with coefficients a1, a2 and a3, identified as

a1 =
23

168

√
2Mμ − 15

8
, (5.41)

a2 =
9

80

√
2Mμ − 45

16
, (5.42)

and
a3 =

15

56

√
2Mμ − 65

8
. (5.43)

These three factors divide the range of Mμ into four smaller ones. Each of these is
discussed next.
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Figure 5.4: Streaming about a drop displaced between velocity node and antinode
for k̄z0 = π/4, k̄ = 0.3, and Mμ = 9.36

Figure 5.5: An experimental result. The tested particle is a drop of water with
diameter 1.8-1.85mm. The acoustic frequency is 37kHz, corresponding to M � 110
and Mμ � 2.3
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Figure 5.6: Detailed streaming near the surface of drop stretched in the θ − r plane
for k̄z0 = π/4, k̄ = 0.3, and Mμ = 9.36
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Figure 5.7: Streaming about a drop displaced between velocity node and antinode
for k̄z0 = π/4, k̄ = 0.3, and Mμ = 12.48
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Figure 5.8: Detailed streaming near the surface of drop stretched in θ − r plane for
k̄z0 = π/4, k̄ = 0.3, and Mμ = 12.48
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Figure 5.9: Streaming about a drop displaced between velocity node and antinode
for k̄z0 = π/4, k̄ = 0.3, and Mμ = 19.5
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Figure 5.10: Detailed streaming about the drop for k̄z0 = π/4, k̄ = 0.3, andMμ = 19.5
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Figure 5.11: Streaming about a drop displaced between velocity node and antinode
for k̄z0 = π/4, k̄ = 0.3, and Mμ = 28.08
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For
a1 < 0 or Mμ <

315

46

√
2,

there are vortices near the surface of the drop on the side of velocity node, as shown
in Figures 5.3 and 5.4. Here there is a large recirculatory region on the ‘front side’ of
the drop with respect to the outer streaming which is downward. This may appear
to be unusual from the standpoint of flows past obstacles that have a rear-side wake.
However, with levitation, there is a low-pressure region on the top, and therefore
it is possible for recirculation in that region. An experimental result is shown in
Figure 5.5 which is qualitatively consistent with the theoretical prediction. While
the experiment corresponds to M = 113, theoretical calculations at such low value
of Mμ do not show a ‘front-side’ recirculatory region. However, in the experiment,
there are some effects such as those from the chamber walls that are not accounted
for. There are some other interesting features in this flow field. There exist very thin
recirculatory regions in the gas phase on the lower side of the drop. These are difficult
to resolve graphically, except on a stretched scale (see Figure 5.6). With an increase
in Mμ, when

a1 > 0 and a2 < 0, or 315

46

√
2 < Mμ <

25

2

√
2,

the vortices disappear. While the streamlines inside the shear-wave layer join the
outside ones smoothly, as shown in Figure 5.7, the small recirculatory region still
persists. With further increase in Mμ, when

a2 > 0 and a3 < 0, or 25

2

√
2 < Mμ <

91

6

√
2,

the thin layer of recirculation becomes apparent near the surface on the lower side of
the drop, as shown in Figures 5.9 and 5.10. When Mμ is very large, corresponding to

a3 > 0 or Mμ >
91

6

√
2,

the thin layer of recirculation becomes enlarged and vortices are created on the side
of the velocity antinode as shown in Figure 5.11.

One of the important findings of the present study is the marked difference in the
streaming flow behaviour about a liquid drop from that about a solid sphere. This
is the case even when the liquid viscosity is quite high. It is apparent that the flow
characterization is sensitive to surface mobility which affects the interaction of the
acoustic wave with that surface. As shown by Schlichting [23] and by Riley [20], the
interaction with a solid surface produces recirculating regions adjacent to the surface.
However, as argued earlier by Zhao, Sadhal & Trinh [26], the flow behavior resulting
from vorticity generated at the interface by this interaction is affected by the surface
mobility.

5.3 Bubbles in Acoustic Fields

In this section, we shall examine the phenomenon of microstreaming that happens
due to a bubble when its surrounding liquid is undergoing steady vibrations. We shall
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not discuss other phenomena such as sonoluminescence. The early experiments by
Elder [2] demonstrated that the streaming observed around the bubble is opposite to
that for a solid particle. This is indeed consistent with the absence of the recirculating
layer for the bubble. In fact, for a surface-contaminated bubble which behaves like
a rigid particle, the recirculating layer was observed. Interestingly, when the driving
amplitude was increased, the surface skin broke and the streaming changed sign. The
analysis of this type of flow was conducted by Davidson & Riley [1] based on Riley’s
[20] basic development. Among the solutions obtained were cases for |M |2 = ωa2/ν �
1, and |M |2 = ωa2/ν � 1. Since the groundwork for the basic perturbation procedure
is similar to Riley’s [20] classical solution (see also pages 20 -24 in Section 3.2), we
shall give only the results. The analysis was carried out for a bubble at the velocity
antinode. The flo-field description can be given by equation (3.5) on page 21 in
Section 3.2.1, together with the far-field condition (3.9). As with the the solid sphere
case, the zero normal velocity at the surface surface is maintained. However, in place
of the zero tangential velocity, we have the shear-free condition. Therefore, instead
of (3.8), we have

ψ = 0 and
∂2ψ

∂r2
− ∂ψ

∂r
= 0 at r = 1. (5.44)

The perturbation expansion used in this analysis employed both ε = U∞/ωa� 1 and
|M |−1 � 1, i.e.,

ψ = ψ00 + (1/|M |)ψ01 + (1/|M |2)ψ02 +O(1/|M |3)
+ε

[
ψ10 + (1/|M |)ψ11 + (1/|M |2)ψ12 +O(1/|M |3)

]
(5.45)

for the outer region. The solution was found to be

ψ00 = 1
2
r2(1− 1/r3)(1− μ̄2)eiτ ,

ψ01 = 0,

ψ02 =
3i

r
(1− μ̄2)eiτ , (5.46)

where the set of boundary conditions (5.44) cannot be fully satisfied since highest
derivatives in (3.5) are lost in the outer expansion with 1/|M | � 1. Using inner
variables as defined in equations (3.13) and (3.14) on page 22, and noting that Rs =
ε2|M |2, the expansion procedure

Ψ = Ψ00 + (1/|M |)Ψ01 + (1/|M |2)Ψ02 +O(1/|M |3)
+ε

[
Ψ10 + (1/|M |)Ψ11 + (1/|M |2)Ψ12 +O(1/|M |3)

]
(5.47)

is used. The result is given as [1]

Ψ00 = 3
2
η(1 − μ̄2)eiτ

Ψ01 = 3
2

√
2
(
1− e−(1+i)η

)
(1 − μ̄2)ei(τ+π/2)

Ψ02 =
[
η3 − 3iη − 3(1 + i)

(
1 − e−(1+i)η

)]
(1− μ̄2)eiτ (5.48)
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To O(ε), the steady components are given as

ψ(s)
11 = −27

40

√
2
(
1 − 1

r2

)
μ̄(1− μ̄2)

Ψ(s)
11 = −18√2

{
1 − 3

20
− 1

4

[
4 cos ηe−η + ηe−η (cos η + sin η)

]}
μ̄(1− μ̄2)(5.49)

with ψ
(s)
10 = ψ

(s)
12 = Ψ

(s)
10 = Ψ

(s)
12 = 0. As with the case of the solid sphere, the

nonzero expression for ψ
(s)
11 indicates the persistence of the streaming outside the

shear-wave layer. The order of the streaming vortices in this case are O(εU
∞
/|M |) as

compared with O(1/|M |) for the solid sphere. The outer streaming pattern is shown
in Figure 5.12. Of course, with the absence of closed streamlines in the shear-wave
layer (see Figure 3.4 on page 25), the outer streaming pattern is the reverse of the
solid-sphere case.

Figure 5.12: The outer steady streaming pattern for a bubble with |M | � 1. Repro-
duced from [1].

5.3.1 Radial and Transverse Oscillations of Bubbles

If we include radial oscillations besides the transverse ones, interesting streaming
patterns emerge [13, 14]. This happens, for example, in the case of a bubble undergo-
ing sonoluminescence. We shall not discuss the details but just examine the results.
While simple transverse oscillations, and purely radial oscillations do not produce any
drift, the combination of these leads to the dipole potential,

Φ =
S cos θ

2r2
, (5.50)
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where the diploe strength S is related to the oscillatory parameters by [13]

S = 1.5
(
ω

2π

)
a3b sin γ. (5.51)

Here, a is the mean radius of the sphere, b is the amplitude of the transverse oscilla-
tions, and γ is the phase difference between the two modes of oscillations.
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Chapter 6

Interaction of Oscillatory Thermal

Fields in Tune with Acoustic Fields

6.1 Introduction

In this chapter, we shall examine the process of convective heat transfer due to
acoustic streaming induced by a sound field about an isolated sphere which is subject
to time-periodic temperature fluctuations. In order to illustrate the ideas, we consider
the problem studied by Gopinath & Sadhal [6] several years back.

The principal feature of interest in the present study is the energy transport
phenomenon emanating from the time-independent contribution of the convective
term due to the interactions of the thermal oscillations with the acoustic field.

In previous studies [4, 5], the steady heat transport due to the streaming motion
was examined for the case of an isothermal sphere exchanging heat with an isothermal
fluid. However, in the development reported here, although the ambient fluid is
considered isothermal, the temperature of the sphere is taken to be time-periodic. The
basic problem of the sphere considered here would help address the larger issue of the
influence of acoustic fields on such processes. The discussion here deals principally
with the convective transport of heat due to steady streaming effects in the fluid
around the sphere.

The steady streaming motion in the fluid is taken to be induced around a rigid
sphere of radius, a, by a standing acoustic field with a velocity distribution of the
form,

U
∞

cos(ωt) sin(2πz/λ) (6.1)

Here we treat the parameter ranges of aω/c � 1 and ε = U
∞
/aω � 1, for which

the flow induced around the sphere can be assumed to be laminar and unseparated,
with negligible compressibility effects. This also allows the governing equations to
be treated by the method of matched asymptotic expansions with ε playing the role
of a small perturbation parameter. Furthermore, only the high frequency range,
M2 = a2ω/ν � 1, is considered, for which the streaming effects are most significant.
Here again, we use the flow field solution developed by Riley [20] in which the steady
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flow field of interest has a thin, inner recirculating Stokes layer region in which an
O(εU

∞
) streaming velocity originates to drive the steady flow in an outer region

making up of the remainder of the domain. In the analysis reported here, the acoustic
signal is taken to be sufficiently strong so as to give rise to a large streaming Reynolds
number (Rs = ε2M2), for which the steady transport effects due to the streaming
motion are most pronounced. Particular attention is given to cases in which the
surrounding fluid is a gas with Pr = O(1). For large R

s
, the outer steady flow has a

boundary layer structure, the behavior of which has been obtained in [5].
For purposes of simplicity the periodic temperature excursions of the sphere are

taken to be harmonic (at a single frequency) and of the form, T∞+(∆T )
a
cos(ωt+γ).

It is assumed that the amplitude of these oscillations, (∆T )
a
, is small enough to ne-

glect (as a first approximation) any interaction of the thermal and acoustic fields.
Furthermore, it is also assumed that any high-intensity thermoacoustic effects as dis-
cussed by Gopinath [4] are small. The validity of this assumption can be ensured
if a suitably defined Eckert number is maintained small. More importantly, it must
be noted that the angular frequency of the acoustic field, ω, is taken to be “tuned”
to match that of the temperature oscillations, with allowance made for a possible
difference in phase, γ. Such isoharmonic situations are of principal interest since
the magnitude of the expected steady heat transport resulting from the interactions
of these oscillations is the strongest for such cases. In general however, the proce-
dure followed in this study can be extended to any arbitrary periodic temperature
disturbance, after it is Fourier decomposed into its constituent frequencies.

6.2 Governing Equations

For this axisymmetric problem, we describe the fluid motion by the Stokes stream
function (ψ ≡ ψ∗/U

∞
a2) in a spherical coordinate system. It is related to the velocity

components by equation (3.7). The momentum equation is given by (3.5) and the
dimensionless energy equation is as follows

∂φ

∂τ
+

ε

r2

[
∂(ψ,φ)

∂(r, μ̄)

]
=

1

Pr ·M2
∇2φ, (6.2)

where

∇2 =
1

r2
∂

∂r

[
r2

∂

∂r

]
+

1

r2
∂

∂μ̄

[
(1 − μ̄2)

∂

∂μ̄

]
(6.3)

The boundary conditions are

φ = cos(τ + γ) and ψ =
∂ψ

∂r
= 0 at r = 1 (6.4)

ψ → 1

2
r2(1− μ̄2) cos τ

φ → 0

}
as r→∞ (6.5)

As with the previous discussion, we are concerned with the cases of ε� 1 andM � 1.
Following Riley’s [20] for small ε and 1/M , together with the treatment of Gopinath
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& Mills [5], we focus on determining the additional steady thermoacoustic streaming
phenomena introduced by the interaction of the oscillating thermal and acoustic fields.
These methods call for perturbation expansions in the inner and outer regions.

6.3 The Inner Region

For the frequency parameter, |M | � 1, the oscillatory flow has a Stokes boundary
layer on the surface of the sphere with an irrotational exterior region. The dynamics
of this inner oscillatory shear layer region of dimensional thickness of O(δ) can be
described in terms of the boundary layer variables, η and Ψ, given by equations
(3.13)—(3.14), together with Φ(η, μ̄, τ) ≡ φ(r, μ̄, τ). In these variables, Ψ satisfies the
equation for the temperature distribution given by

∂Φ

∂τ
+ ε

[
∂(Ψ,Φ)

∂(η, μ̄)

]
+O(εM−1) =

1

2 Pr

[
∂2Φ

∂η2
+

2
√
2

M

∂Φ

∂η
+O(M−2)

]
(6.6)

These equations can satisfy only the inner boundary conditions on the sphere surface,
i.e.,

Ψ =
∂Ψ

∂η
= 0 and Φ = cos(τ + γ) at η = 0 (6.7)

The solution for the stream function, Ψ, has been presented earlier, and the leading
order term, Ψ0 is given by equation (3.12). This may be expressed in real variables
as

Ψ0 =
3
√
2

4
(1− μ̄2)

[√
2 η cos τ − cos(τ − π

4
) + e−η cos(τ − η − π

4
)
]

(6.8)

Although the above form for Ψ0 will suffice for the present illustration, it is important
to note that it is the time-independent part of the O(ε) contribution which explains
the behavior of the acoustic streaming motion in the inner region and provides a
description of the slip-like velocity which drives the steady flow in the outer region.

For the temperature distribution also, a perturbation expansion of the form

Φ = Φ0 + ε(Φ1s + Φ1u) + . . . (6.9)

is sought. Here it can be shown from a solution of equation (6.2) subject to equations
(6.4)—(6.5) that the leading order solution, Φ0, is given by

Φ0 = e−ηPr
1/2

cos(τ + γ − η
√
Pr) (6.10)

and represents an oscillatory temperature wave in the Stokes layer region. Since the
variation of Φ0 is time-periodic, there is no net time averaged transfer of heat at this
level. Of greater interest is the O(ε) contribution to the temperature distribution
in the fluid which arises only due to the presence of the acoustic field. An analysis
of the O(ε) terms of equation (6.6) using equation (6.9) shows that in addition to
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an O(1) second harmonic and an O(1/
√
R

s
) first harmonic contained in Φ1u, there

also arises from the convective term a non zero steady part, Φ1s, resulting from the
time-averaged interaction of the leading order oscillatory temperature and flow fields
in the fluid. The behavior of this steady part is governed by

1

2 Pr

∂2Φ1s

∂η2
=

〈
∂(Ψ0,Φ0)

∂(η, μ̄)

〉
, (6.11)

where the angle-brackets, 〈 〉, denote a time-average of the enclosed quantities. This
equation is subject to the inner boundary condition

Φ1s = 0 at η = 0 (6.12)

and appropriate matching with the outer region. Although the details of the analysis
have been excluded, it can be shown that the resulting variation of Φ1s can be obtained
from a solution of the above equations as,

Φ1s =
3μ̄

2
e−η

√
Pr

[√
Pr (1 − η) cos(γ − η

√
Pr)

− (2 + η
√
Pr) sin(γ − η

√
Pr)

+
Pr
√
Pr

(1 + Pr)2
e−η

{
(1 − Pr) cos(γ + η − η

√
Pr)

+ 2
√
Pr sin(γ + η − η

√
Pr)

}]
+ μ̄ Φ1∞(Pr, γ) (6.13)

where

Φ1∞(Pr, γ) =
3

2

√
9Pr+ 4

(1 + Pr)
sin(γ − γ0)

with tan γ0 =

√
Pr(1 + 3Pr)

2(1 + 2Pr)
(6.14)

There are two important implications of this steady temperature variation, both of
which depend strongly on the phase difference, γ, namely:

6.4 The Outer Region, Rs � 1

For the related problem of the steady variation of velocity and temperature in the
outer region, the solution in the form of series expansion similar to equation (6.9) is
sought. Therefore, the following expansions are used

ψ = ψ0 + ε (ψ1s + ψ1u) + · · · (6.15)

φ = φ0 + ε (φ1s + φ1u) + · · · (6.16)
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with particular interest in the dominant contributions of the time—independent por-
tions of each, namely the steady component of the O(ε) term, ψ1s, in equation (6.15)
for the stream function and theO(ε) term, φ1s, in (6.16) for the temperature. For com-
pleteness it is also useful to quote the solution for the basic leading order contribution
to the stream function, ψ0 in equation (6.15), obtained by Riley [see equation (3.11)].
For the leading order temperature, φ0 in eqiation (6.16), matching (as η→∞) with
the exponentially decaying oscillatory behavior of the inner region in equation (6.10)
shows that in the outer region φ0 ≡ 0.

Stuart [24] showed that the nature of the steady transport effects in the outer
region is governed by the magnitude of the streaming Reynolds number, Rs. This
parameter can be determined from the acoustic signal and the fluid properties as
described (for the case of air) in [5]. In general, for a plane standing acoustic field in
an ideal gas, Rs can be expressed as

Rs =
c2

ωνγ2
r

(
p0
pm

)
2

(6.17)

where (p0/pm) is the pressure amplitude ratio, which is oftentimes the measured
parameter used to characterize strong acoustic fields.

For large values of Rs and Pr = O(1) being considered here, the variation of the
steady terms ψ1s and φ1s in this outer region exhibits a boundary layer behavior as
mentioned before. Although this boundary layer region is thin on the scale of the
sphere radius, it is much thicker than the inner Stokes layer. This region has to
be analyzed by a numerical solution of the governing equations subject to suitable
matching conditions from the inner region. These equations themselves have to be
obtained in a not entirely trivial manner as described by Riley [20]; the procedural
details have been omitted here and the relevant equations as developed in [5]have sim-
ply been summarized below in their final forms. The outer boundary layer variables
are defined as,

η̄ = (r − 1)
√
Rs (6.18)

and
ψ̄1s(η̄, μ̄) = ψ1s(r, μ̄)

√
Rs, φ̄1s(η̄, μ̄) ≡ φ1s(r, μ̄). (6.19)

For convenience these are expressed in terms of commonly used symbols for the co-
ordinates and suitably defined “artifical” velocities,

y ≡ η̄ , x ≡ μ̄ , u =
∂ψ̄1s

∂η̄
, v = −

∂ψ̄1s

∂μ̄
(6.20)

along with
t(x, y) ≡ φ̄1s(μ̄, η̄). (6.21)

The governing equations in these variables are,

∂u

∂x
+

∂v

∂y
= 0 (6.22)
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u
∂u

∂x
+ v

∂u

∂y
+

xu2

(1 − x2)
=

∂2u

∂y2
(6.23)

u
∂t

∂x
+ v

∂t

∂y
=

1

Pr

∂2t

∂y2
(6.24)

with boundary conditions

u =
45

16
x (1 − x2), v = 0, t = x Φ1∞ at y = 0 (6.25)

u→ 0, t→ 0 as y→∞ (6.26)

It may be recalled from the brief discussion at the end of §3, that the limiting value of
the temperature from the inner region, Φ1∞ in equation (6.14), prescribes the driving
temperature for the outer region as is clear from the temperature boundary condition
in equation (6.25).

The governing equations are now completely defined and can be solved with the
help of a suitable numerical method. The coupled set of nonlinear partial differential
equations for u and v are first solved using an implicit finite-difference scheme with
marching of the solution from the equator (x = 0) to the poles (x = ±1). All the
derivatives are approximated by central differences and the nonlinearity is handled
by quasi-linearization and iteration at each x-station along the periphery. Owing to
the decoupled nature of the momentum and energy equations, once u and v have
been determined, the temperature, t, can be found in a relatively straightforward
non—iterative manner using triangular resolution and backward substitution. The
symmetry about the equatorial plane is exploited to carry out the procedure over only
one hemisphere. Further details of the discretization scheme and the grid parameters
as well as an account of the means of accomodating the converging flow in the polar
regions may be found in [5].

It must be emphasized that the system of governing equations and boundary
conditions presented above for the outer region, is strictly valid only for cases of
strong streaming motion (Rs � 1) in moderate Prandtl number fluids (Pr ∼ 1).

1. Equation (6.13) predicts a nonzero fluid temperature gradient at the sphere wall
given by

∂Φ1s

∂η

∣
∣
∣
∣
∣
η=0

=
3μ̄√
2
sin(γ1 +

1

4
π) sin(γ − γ1)

with

tan γ1 =

√
Pr− 1√
Pr+ 1

. (6.27)

This yields an average inner Nusselt number (based on the sphere diameter) for
the corresponding heat transfer rate over each hemisphere.

2. The variation in equation (6.14) also prescribes a temperature at the outer edge
of the inner Stokes region (Φ1s(η→∞)→μ̄Φ1∞) which in turn determines the
steady temperature distribution in the outer region.
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Figure 6.1: Outer boundary-layer temperature profiles for air (Pr = 0.7) for the case
(γ − γ0) =

1

2
π and Rs � 1. The corresponding angular locations are degrees [6].

6.5 Discussion

It should be noted at the outset that the results for the steady flow field, ψ1s, are
known and a representative plot of the boundary layer velocity profiles may be found
[5]. It is the variation of the steady temperature and the related heat transfer effects
which will be of special interest in this study.

A representative plot of the numerically determined outer boundary layer temper-
ature profiles for air (Pr = 0.7) is given in Fig. 6.1 for the case of (γ − γ0) = π/2 and
0◦ < θ ≤ 90◦. For the other hemisphere (90◦ ≤ θ < 180◦), the sign on the temper-
ature values is reversed and the corresponding distribution may be simply obtained
by a reflection about the y—axis.

Also of interest, is the variation of the local heat flux over the periphery of the
sphere. This is characterized by the local driving temperature gradient for the outer
region, (−∂t/∂y)y=0, which is plotted in Fig. 6.2, also for Pr = 0.7 and (γ−γ0) = π/2.
The observed trend in this figure may be explained as follows: since, according to
equation (6.25), t ∼ x, the magnitude of the temperature and its gradient increase
with |x| as the flow progresses from the equator to the poles. However, as the flow con-
verges towards the poles (x = ±1), continuity dictates a thickening of the boundary
layers. This in turn reduces the driving fluid temperature gradient, which becomes
negligible as x→ ±1, where there is a breakdown of the boundary layer structure of
the flow. The temperature gradient thus reaches a maximum at some intermediate
angular location, which for air (Pr = 0.7), occurs at θ ≈ 45◦,135◦. The resulting heat
transfer rate with the fluid (over each hemisphere) can be characterized by an average
outer Nusselt number (based on the sphere diameter) by numerically integrating this
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Figure 6.2: Distribution of the local heat flux for air (Pr = 0.7) over the upper
hemisphere for (γ − γ0) =

1

2
π and Rs � 1 [6].

driving temperature gradient. For air (Pr = 0.7) this gives

Nu0
ε
√
Rs

=
∫

1

0

(
−

∂t

∂y

)
y=0

dx ≈ 1.20 sin(γ − γ0) (6.28)

An observation of the μ̄—dependence of the temperature in equations (6.13)—(6.27)
(and hence in equation (6.25)) shows that the driving temperature and its gradient
in both the inner and outer regions, are antisymmetric about the plane of the equa-
tor. This indicates that the Nusselt number result in (6.28) is only valid for each
hemisphere, and there is no net exchange of heat between the entire sphere and the
fluid. Such a situation is physically realized in the fluid by an equal amount of cool-
ing and heating in each hemispherical portion of the domain, while within the solid
sphere it takes the form of a steady flow of heat into a hemisphere and out the other,
across the equatorial plane. Thus in the sphere, this time averaged heat flow rate is
capable of inducing a steady temperature gradient across its poles. It is also clear
from these Nusselt number results that the magnitude and direction of this heat flow
strongly depend on the relation between the imposed phase difference, γ, and the
innate phasing provided by the fluid via γ0 and γ1, which is a characteristic feature
of such thermoacoustic flows.

In concluding, it is emphasized that this fundamental problem serves to underline
the importance of the ability to induce steady heat transfer rates to/from a body
subject to time—periodic temperature fluctuations. A suitably chosen acoustic field is
an important participant here and without it, the body does not experience a steady

exchange of heat with the surrounding fluid.
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•! wet etched in <100>-silicon 
•! channel width: 350 !m 
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•! piezoelectric actuation 
•! fundamental frequency: ~ 2 MHz 
•! capacity: 0.1 ml/min 

Inlet 

Outlets 

Glass lid 
(anodic bonding) 
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Picture by courtesy of Dr Dixon Moody 

Lipid microemboli in dog brain 
Studies with 1 SD drop in 2- or more tests
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Incidence of cognitive decline after 
cardiac surgery 

Acoustic parameters of blood 
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Density 
[kg/m3] 

Compressibility 
[ms2/kg] 

Velocity 
[m/s] 

%% 

fat 1,09E+03 3,58E-10 1,60E+03 1,84E-01 

erythrocyte 9,20E+02 5,20E-10 1,45E+03 -3,85E-01 

plasma 1,03E+03 4,09E-10 1,54E+03 

%  d (5#erythrocyte-2#plasma)/(2#erythrocyte+#plasma) – ("plasma/"erythrocyte) 



Lipid emboli elimination in blod'
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Bifurcation structure for increased throughput 



Fat emboli reduction ratio - FERR 

Real shed blood 
Model with radioactive labelled fat 

100% FERR (Fat Emboli 
Reduction Ratio) - visual 

Before 

After 

50%

60%

70%

80%

90%

100%

0% 5% 10% 15% 20% 25% 30%

Hematocrit 

Separation 
efficiency 

50%

60%

70%

80%

90%

100%

0% 5% 10% 15% 20% 25% 30%

Erythrocyte recovery 
Recovery 

Hematocrit 

80-90% FERR (Fat Emboli 
Reduction Ratio) 

Up to 90%  
Erythrocyte recovery 

Free Flow Acoustophoresis - FFA 
 - continuous multiplex separation - 

Cross-section of the channel 
after the piezoceramic 
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Free Flow Acoustophoresis - FFA - chip design 

•! channel width:  
  350 !m 
•! channel depth: 
  125 !m 
•! actuation: 
  piezoceramic 
•! frequency:  
  ~ 2 MHz 
•! capacity:  
  &0.5 ml/min  
  (1/10 sample) 
•! power:  
  0.5 - 2.0 W 

PS particles 

Ultrasound 
OFF 

• three active outlets 
• total flow rate: 0.4 ml/min 
• sample flow rate:  
  0.04 ml/min 
• & 2% by volume of each 

Ultrasound ON/OFF Ultrasound 
ON 

3 !m (red) 
7 !m (white) 
10 !m (blue) 

FFA-separation of three particle sizes 



FFA – Separation of 3, 7 & 10 um particles 

• total flow 
  0.4 ml/min 
• sample flow 
  0.04 ml/min 
• sample  
  conc. 
  3x2% by vol. 

Outlet 1
Outlet 2
Outlet 3

Category

Error Bars show 95,0% Cl of Mean N = 6

3 7 10
Particle size (!m)
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• total flow 
  0.4 ml/min 
• sample flow 
  0.04 ml/min 
• sample  
  conc. 
  4x1% by vol. 

Outlet 1
Outlet 2
Outlet 3
Outlet 4

Category

Error Bars show 95,0% Cl of Mean N = 6
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• total flow 
  0.4 ml/min 
• sample flow 
  0.04 ml/min 
• tot. cell conc. 
  2% by vol. 

Outlet 1
Outlet 2
Outlet 3
Outlet 4

Category

Error Bars show 95,0% Cl of Mean N = 7

RBC, with CsCl TRB, with CsCl WBC, with CsCl
Celltype, Medium
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• Red Blood Cells (RBC) (~2.5"10e11 /L) 
• Platelets (PLT) (~1.0"10e11 /L)  
• White Blood Cells (WBC) (~1.5"10e9 /L) 
• CsCl: 0.22 g/ml 

PLT, 

RBC PLT WBC 

Buffy coat separation 

 

v(y) =
"p
4#L

$ R2 % y 2( )

_%28'=*#%8+252:'

2a!
v(y)!

lusw'

 

tusw =
lusw
v(y)

"
1

R2 # y 2

y!

 

Fusw = Fstoke = 6"#avlateral

x'

Side view!

Top view!

Fusw!v(x)!

Topview!

x'

 

x = vlateral tusw "
1
y 2

vlateral!



Free flow acoustophoresis (FFA) with prefocusing 

No prefocusing With prefocusing 

No prefocusing With prefocusing 

Free flow acoustophoresis (FFA) with prefocusing 

No prefocusing 

With prefocusing 
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Changing the properties of 
the suspending medium 
Density manipulation !m 

==> 
a difference in acoustic 
force on similar particle 
types can be obtained 

Normally acoustically unseparable 
particles can be separated! 

% $= XR#.JO#$YAXO#.j#$Y'J'X".A"$Y'

Fr  = primary acoustic radiation force 
P0  = acoustic pressure amplitude 
Vp  = particle volume 
"m  = compressibility of the medium 
"p  = compressibility of the particle 
!  = acoustic wavelength 
x  = particle distance from a pressure node 
#m  = density of the medium 
#p  = density of the particle 

 

Fr = "(
#P0

2Vp$m

2%
) & '($,() & sin(4#x

%
)

1+85)$'$%25.),%C#2'J'B3'6'B11\'

With CsCl (0.22 g/ml) 
added: 

&96 % PMMA - middle 
& 88 % PS - side   

• two active outlets 
• total flow rate: 
  0.4 ml/min 
• sample flow rate:  
  0.04 ml/min 
• & 2.5% by volume  
  of each particle type 

3 !m PS particles 
(red, 1.05 g/cm3) 

& 
3 !m PMMA particles  

(white, 1.22 g/cm3) 
in distilled water 



Outlet 1
Outlet 2

Category

Error Bars show 95,0% Cl of Mean

with CsCl, PLT
with CsCl, RBC

without CsCl, PLT
without CsCl, RBC

Celltype, Medium
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• total flow 
  0.2 ml/min 
• sample flow 
  0.02 ml/min 
• sample conc. 
  2x1% by vol. 
• CsCl  
  0.22 g/ml 

RBC = Red Blood Cells 
PLT = Platelets 

RBC 

Media 
manipulation 

PLT PLT RBC 

No media 
manipulation 
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1125 !m (3*"/2 @ 2 MHz) 

(5.58'8+.,+C#2'$#8+'M!AO'+2%=,+&''
,%=+,'E*++'4+,,'4#)2/'52'$5,]'''

(5.58'8+.,+C#2'$#8+'M!AO'

•! \4#)&/#."#*+C4'*+$#;%,'#E'
,5.58&'52'*%?'$5,]'%,,#?&'
5$$+85%/+'H!7DJ%2%,>&5&''
–! ,%4/#&+'%28'.*#/+52'
–! <#',5.58'85&&#,;52:'4"+$54%,&'

•! (%4/#&+'%28'.*#/+52',+;+,&'
*+$%52')24"%2:+8'?"5,+'lLQp'
#E',5.58&'%*+'*+$#;+8'



(5.58'8+.,+C#2'$#8+'M!AO'
+2%=,+&',%=+,'E*++'$5,]'4+,,'4#)2/''

!"#$%&'('"$$)*+,'-'./0'1&%%23#4'
5'6%*7'189*#&9)8':';8'1*<%9&)'1*<=9&)'

6 8 10 12 14 16 18
0

1

2

3

4

5

6

7

8

9

10
x 104

 

 

 

 

 
Centrifugated sample
No ultrasound
Ultrasound on
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Raw sample'

Sample after acoustophoresis'

Fluorescence mode Phase contrast 

Fluorescence mode Phase contrast 

Acoustophoretic sample preparation  
-! Cells visible in normal microscope 
-! Requires no staining to count cells 
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L2:
Designing multi-

frequency force fields in 
i tmicrosystems

Martin Wiklund
Dept  of Applied Physics

M. Wiklund

-1-

Dept. of Applied Physics
Royal Institute of Technology

Stockholm, Sweden

CISM course ”Ultrasound standing wave action on suspensions 
and biosuspensions in micro- and macro fluidic systems”,

June 7-11, 2010

Outline

- Single-frequency force fields in microsystems

- Multiple-frequency force fields in 
microsystems

- Actuation strategies using more than one
frequency

M. Wiklund

-2-
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Starting point

- Our experimental observations from 2004 
until today (Wiklund group)

- Our attempts to predict the observations by 
numerical modelling from 2007 until today 
(Wiklund group, collab. with the Bruus group)

- Review of different strategies involving more 

M. Wiklund

-3-

than one actuation frequency (all groups):
- Superimposed orthogonal fields, small ∆f (Dual group)
- Superimposed orthogonal fields, large ∆f (Wiklund group)
- Frequency modulation techniques (Hill group, Wiklund group)

Single-frequency
approaches

M. Wiklund
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Transducer – chip platform

glass-silicon-glass
chipchip

fluid channel

wedge transducers

M. Wiklund

Wiklund et al., Lab Chip 6, 1537 (2006)

[cm]

Transducer – chip platform

M. Wiklund

• 1 – 5 transducers
• < 10 Vpp actuation voltage
• 1 – 10 MHz actuation frequency



4

Radiation force:
Numerical modelling

• Gorkov equation: Force F depends on particle volume V
and material constans f1 and f2:

1 2
3
2pot kinU V f E f E

     
 

2

2
0 0

2
0

2

2

pot

kin

p
E

c

v
E





 


 
U F

where

M. Wiklund

• F can be expressed as a function of the 
pressure field only:

 1 2V f p p f p p        F

Radiation force:
Numerical modelling

• Simulations of displacement field in Comsol (in 2D)

Vibrations:
Piezo flexural plate

wave-type!
Channel

M. Wiklund
Manneberg et al.,
J. Micromech.
Microeng. 18,
095025 (2008)
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Radiation force:
Numerical modelling

• The displacement field
in the solid structure

l t

Solid structure Fluid channel

• Calculation of the 
radiation force:

couple to a pressure 
field in the fluid channel: 

Fx

y

M. Wiklund

radiation force:

 1 2V f p p f p p        F Fy

x
y

x

• What about the z direction?
(along the channel)

i l ti

Radiation force:
Numerical modelling

y

• x-z simulations:
x

10×Fz

x

z

x

z
pressure2

f=1.88 MHz f=2.03 MHz

M. Wiklund

• Note: In flow-through, these are ”identical”!

Fx

exp. images with 5 µm beads
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Origin of the
spurious cavity modes?

M. Wiklund

Spurious cavity modes
• A microchannel is part of a complex 3D 

resonator (including its solid support = chip)

Pure 1D channel resonances Sometimes very complex patterns
impossible:

y p p
are obtained:

6.20 MHz 1.48 MHz

M. Wiklund

No-flow manipulation of 2 µm beads at different actuation frequencies

7.21 MHz

7.17 MHz

6.61 MHz

1.83 MHz
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Compare: Chladni plates

Plate vibration 
modes 
visualized by 
particles

Originally: Violin bow Today: Tone generator

particles
(sand, powder)

M. Wiklund

1295 Hz 1409 Hz 1538 Hz 1737 Hz

1824 Hz 1999 Hz 2366 Hz 4254 Hz

Microfluidic chip

Ultrasonic transducer

Compare: Chladni plates
• Similar

phenomenon in
a microfluidic
hi ?

Operation from 1 to 6 MHz:

Expansion chamberchip?

M. Wiklund

3.75 mm
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Prediction of spurious cavity modes?
Theoretical work in the 80s:
Barmatz and Collas (J. Acoust. Soc. Am. 77, 928 (1985))

Resonance frequencies:

22 2

, , 2 2 22x y z

ymed x z
n n n

x y z

nc n n
f

l l l
  

Gorkov equation:

Resonance frequencies:

M. Wiklund

Gorkov equation:

Prediction of spurious cavity modes?
Theoretical work in the 80s:
Barmatz and Collas (J. Acoust. Soc. Am. 77, 928 (1985))

Resonance frequencies:

22 2

, , 2 2 22x y z

ymed x z
n n n

x y z

nc n n
f

l l l
  

Potential minimas (”nodal force surfaces”):

Resonance frequencies:

M. Wiklund
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Prediction of spurious cavity modes?
Application to a microfluidic channel:
Henrik Bruus et al (Lab Chip, 2010)

Resonance frequencies:

22 2

, , 2 2 22x y z

ymed x z
n n n

x y z

nc n n
f

l l l
  

Resonance frequencies:

Bruus/Laurell 
groups,
Lab Chip 10

M. Wiklund

Lab Chip 10,
563 (2010)

Prediction of spurious cavity modes?
Compare the analytical solution (Bruus) with
Comsol simulations and experimental verification (Wiklund):

Common for all: ”Dead zones”

Manneberg, Wiklund et al,
J. Micromech. Microeng.
18, 095025 (2008)

Bruus/Laurell 
groups,
Lab Chip 10

M. Wiklund

Lab Chip 10,
563 (2010)

Bruus/Laurell 
groups,
Lab Chip 8,
1178 (2008)

Same results were found earlier by Townsend/Hill in Ultrasonics 44, e467 (2006)
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Prediction of spurious cavity modes?
Theoretical work in the 80s:
Barmatz and Collas (J. Acoust. Soc. Am. 77, 928 (1985))
See also Kinsler, Frey et al, Chapter 9 (”Cavities and Waveguides”)

Resonance frequencies:

22 2

, , 2 2 22x y z

ymed x z
n n n

x y z

nc n n
f

l l l
  

Simple 2D example, lx x ly  = 200 x 300 µm rectangle:

Resonance frequencies:

M. Wiklund
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, 2 2
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2
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Prediction of spurious cavity modes?
Theoretical work in the 80s:
Barmatz and Collas (J. Acoust. Soc. Am. 77, 928 (1985))

Resonance frequencies:

22 2

, , 2 2 22x y z

ymed x z
n n n

x y z

nc n n
f

l l l
  

Simple 2D example, lx x ly  = 200 x 300 µm rectangle:

Resonance frequencies:

M. Wiklund

 

22
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2

0,1 2.75 MHz

x y

ymed x
n n

x y

x y
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f

l l
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Prediction of spurious cavity modes?
Theoretical work in the 80s:
Barmatz and Collas (J. Acoust. Soc. Am. 77, 928 (1985))

Resonance frequencies:

22 2

, , 2 2 22x y z

ymed x z
n n n

x y z

nc n n
f

l l l
  

Simple 2D example, lx x ly  = 200 x 300 µm rectangle:

Resonance frequencies:

M. Wiklund

 

22

, 2 2

,

2

1,1 4.51 MHz

x y

ymed x
n n

x y

x y

nc n
f

l l

n n

  

 

Note: No trapping in the center! 

Chladni figure,
mode (1, 1)

Prediction of spurious cavity modes?
Experimental verification:

Simple 2D example, lx x ly  = 200 x 300 µm rectangle:

M. Wiklund
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Prediction of spurious cavity modes?

Typical microchannel (top-view):
lx x ly  = 0.75 x 8 mm

 

22

, 2 22x y

ymed x
n n

x y

nc n
f

l l
  

 , 2,3 1.997 MHzx yn n  

M. Wiklund

Experimental verification:

Prediction of spurious cavity modes?
Back to this mode again:

Simple 2D example, lx x ly  = 200 x 300 µm rectangle:

22 n

 

2

, 2 2

,

2

1,1 4.51 MHz

x y

ymed x
n n

x y

x y

nc n
f

l l

n n

  

 

Another approach by
Oberti, Dual et al

M. Wiklund

(JASA, 2007):

Superposition of
two orthogonal
standing waves
(same f and ampl.)
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Prediction of spurious cavity modes?
More reasons for the occurance of
non-uniform nodal lines?

Streaming vortices (400 nm beads)Streaming vortices (400 nm beads)

M. Wiklund

Streaming may add further
complexity to the trapping
pattern!

Multiple-frequency
approaches

M. Wiklund
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Multi-frequency approaches

Approach 1 (Dual group, 2007) - superposition:
Slight frequency difference (∆f/f = 10-5) between two
superimposed orthogonal fieldsp p g
From: [Oberti et al, JASA 121, 778 (2007)]

Same frequency Small frequency shift

M. Wiklund

Multi-frequency approaches

Approach 2 (Wiklund group, 2007) - superposition:
Two frequencies (f1, f2) with larger diff. (f1 - f2) 

h l  i  t d iti  
channel, cross-

ti  i  

ultrasound off 

x transducer on (focusing) 

flow

flow

channel, top-view: transducer position: section view: 

flow X

fl

flow X

high-velocity bead
low-velocity bead

1D

M. Wiklund

y transducer on (levitation) 

both x and y on (alignment) 

flow

flow

Manneberg et al., Proc. of Nanotech Montreux, 2007

flow X

flow X

1D

2D
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Multi-frequency approaches

Approach 2 (Wiklund group, 2007) - superposition:
Two frequencies (f1, f2) with larger diff. (f1 - f2) 

C ith i l f 2D fi ld!

Chladni figure,
mode (1, 1)

Analytical solution,
mode (1, 1)

Compare with single-frequency 2D field!
(No trapping in center)

M. Wiklund

both x and y on (alignment) 

flow

Manneberg et al., Proc. of Nanotech Montreux, 2007

flow X

2D

2.5 MHz 4 MHz

OFF ONON OFF

Multi-frequency approaches

Approach 3 (Wiklund group, 
2008) - localization:

Several frequencies (f1, f2, ...) 
matching local channel
resonances

M. Wiklund

Manneberg et al., Ultrasonics, 49, 112, 2009
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Multi-frequency approaches
Approach 4 (Wiklund group, 2008) – superposition and 

localization:
Many frequencies (f1, f2, …) with larger diff. (f1 - f2, …)
combined with geometrical channel features (”cages”)

1) 2D pre-alignment
6.9 MHz

2) Initially: 1D aggregation
2.5 MHz and 6.9 MHz

combined with geometrical channel features ( cages )
of λ/2-widths in x, y and z directions

flow

M. Wiklund

3) Later: 3D aggregation
2.5 MHz and 6.9 MHz

4) 3D  2D aggregation
tuning the ampl. ratio
of 2.5 and 6.9 MHzManneberg et al, Appl. Phys. Lett. 2008

Multi-frequency approaches
2.6 MHz on (high)
6.9 MHz  off

2.6 MHz on (high)
6.9 MHz on (high)

side view

top viewa b

2.6 MHz on (medium)
6.9 MHz on (high)

2.6 MHz on (low)
6.9 MHz on (high)

c d

M. Wiklund

4) 3D  2D aggregation
tuning the ampl. ratio
of 2.5 and 6.9 MHzManneberg et al, Appl. Phys. Lett. 2008

a) Vertical 2D monolayer on the bottom
b) Vertical 2D monolayer, levitated
c) Compact 3D spheriod, levitated
d) Horizontal 2D monolayer, levitated

c
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Multi-frequency approaches
Video example of cage in action

M. Wiklund

-33-

Single-frequency operation

Levitation mode @ 6.93 MHz Focusing mode @ 2.55 MHz

Multi-frequency approaches
Another example (round ”confocal” cage)

Dual-frequency operation

M. Wiklund

-34-

2.55MHz @ 2 V 2.55MHz @ 6 V 2.55MHz @ 10 V

All three below: 6.93 @ 6 V (constant level) + 2.55 MHz @ varying levels

flow
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flow

Multi-frequency approaches

Rectangular cage

Confocal cage,
large radius of
curvature

flow

M. Wiklund

-35-

Confocal cage,
small radius of
curvature

flow

Multi-frequency approaches
Approach 4, another example (Wiklund group, 2009) –

superposition and localization:
Many frequencies (f1, f2, …) with larger diff. (f1 - f2, …)
combined with geometrical channel features (”cages”)combined with geometrical channel features ( cages )
of different widths (both ~λ and >>λ widths)

M. Wiklund

Svennebring et al., Biotech. Bioeng. 103, 323, 2009
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Multi-frequency approaches
Cage with >>λ width:
(5 mm width @ 6.9 MHz  >20×λ)
Idea: Localization of forces by
focusing

6.93 MHz6.91 MHz 6.92 MHz

focusing

Simulation (Henrik Bruus group, DTU, Denmark)

M. Wiklund Experiments flow

( g p )

Multi-frequency approaches
Cage with >>λ width:
(5 mm width @ 6.9 MHz  >20×λ)
Idea: Localization of forces by
focusingfocusing
6.92 MHz

M. Wiklund Localized
trapping!

High flow rate

Moderate flow
rate

Pre-alignment important!
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Approach 3, another example (Wiklund group, 2009) –
superposition and localization:

Principle of operation:
Resonator design and manipulation functions

M. Wiklund

g p

- Bypass

- Injection

Bypass
flow

...or cells

M. Wiklund

- Bypass

- Retention

TRANSDUCER OFF

TRANSDUCER ON
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Multi-frequency approaches

Approach 5 (Hill group, 2007-2010):
Frequency modulation
(switching between two frequencies,

P. Glynne-Jones,
Ultrasonics 50, 68, 2010

”mode switching”)

M. Wiklund

Multi-frequency approaches

Approach 5 (Wiklund group, 2009):
Frequency modulation (cycling linear frequency sweeps) 

f

t

SingleSingle
frequencies: 
From 6.85 to 
6.95 MHz

”Dead zones” 
at different 
locations for 
different freq.

”Negative 

M. Wiklund

Frequency
modulation:
6.85-6.95 MHz 
at the rate 1 kHz

Negative 
alignment” at 
different 
locations for 
different freq.
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Multi-frequency approaches

Approach 5 (Wiklund group, 2009):

Slow rate of

f

t

f1f1

modulation
(<1 Hz):

Particle
transport! 

1

f2

f3

1

M. Wiklund

f4

f5Video clip:

Combine caging (approach 4)
with frequency modulation (approach 5): Transport + caging!

f1: 6.9±0.05 MHz, rate 1 kHz

Multi-frequency approaches

f2: 2.6±0.05 MHz, rate <1 Hz

Immune cells

M. Wiklund

5 µm beads
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Vol. 9, No. 6,
March 2009

M. Wiklund

Parallelization?
10 x 10 cages of the 300 µm format:

Multi-frequency approaches

Schematic of the multi-well 
plate

Experimental Platform

M. Wiklund

22 x 22 mm
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Multi-well plate:
Compare theory and experiments (beads)

Simulation (1 of the 10 rows)

Multi-frequency approaches

Single
frequency,
2.60 MHz

Frequency
modulation,
2.55-2.65 MHz

Simulation (1 of the 10 rows)

Experiments (1 of the 10 rows)

M. Wiklund

Experiments (1 of the 10 rows)
Single
frequency,
2.60 MHz

Frequency
modulation,
2.55-2.65 MHz

Vanherberghen et al, submitted manuscript

Without ultrasound With ultrasound

Positioning performance with B cells

One
well

M. Wiklund

100
wells

Vanherberghen et al, submitted manuscript
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Video
demo

M. Wiklund

Vanherberghen et al, submitted manuscript

Summary

- Multi-frequency approaches are useful for 
creating advanced manipulation functions:

- Superimposed (orthogonal) fields

- Localized fields

- Both superimposed and localized fields

M. Wiklund

-50-

p p

- Frequency-modulated fields
1. Averaged fields over many frequencies
2. Moving nodes



Ultrasonic trapping, cell culturing!
and coupling to bioanalysis !

Johan Nilsson!

Dept. Measurement Technology and!
Industrial Electrical Engineering!

Div. Nanobiotechnology/Electrical Measurements!
Lund University!

Sweden!

Non-contact acoustic trapping!



Transversal acoustic standing wave forces!

Hammarström et al.!
Lab. Chip. 2010 accepted!

Gradient in energy density required!!

Secondary radiation force!

FB !is the secodary acosutic force, also called Bjerknes force, FB!
d !is the distance between the particles!
!! !is the angle between the center line of the particles and the direction of propagation of the incident acoustic 

wave!
Bjerknes, V.F.K., Die Kraftfelder. 1909, Vieweg und Sohn: Braunschweig,Germany.!



Non-contact acoustic trapping!

Hertz. J. Appl. Phys. 78 (8) 1995!
Manneberg et al.  Appl. Phys. Lett. 93, 063901, 2008.!

Bazou et al. Ultrasound in Med. & Biol. 31 (3) 2005!

Multinode trap!

"/2 trap#

"/2 cage trap #

Multinode trap#

Ruedas-Rama et al. Anal. Chem. 2007, 79, 7853-7857!

Non-contact acoustic trapping!

Normally the limit in particle size for trapping is found around !
1 µm due to acoustic streaming !

Trapping 1 µm particles! Acoustic streaming!
240 nm fluorescentparticles!

Transducer!
900 x 900 µµm!



Our vision"

- Dynamic array trapping -!

Lilliehorn et al. Sens. Act. B 106 (2005) 851!

System set-up for acoustic trapping 

Monolayered 
bead clusters!

Trapping over a 
single transducer!

•! Reflector, (2n+1) "/4  
•! Channel, "/2  
•! Transducer, "/2 

Lilliehorn et al. Sens. Act. B 106 (2005) 851!



Resonator design!
To achieve particle trapping in the center of the 
channel! Channel height: ""/2!

Cover thickness: (2n+1) 
""/4!

[Hawkes et al., Proc. Forum Acusticum 2002 Sevilla, Spain, 2002] 

Transducer: ""/2!

Microfluidic platform 

Printed circuit board with 3 miniaturized 10 
MHz ultrasonic transducers (PZT, 600 x 600 
µm)!

- Transducer plate -!

Lilliehorn et al. Sens. Act. B 106 (2005) 851!



Microfluidic platform 
- Channel structure -!

Lilliehorn et al. Sens. Act. B 106 (2005) 851!

Glaslock med etsade kanaler, 70 µm djupa!

- Transducer and channel structure joined -!

Microfluidic platform 

Lilliehorn et al. Sens. Act. B 106 (2005) 851!



Microfluidic platform 

•!Glass lid - Optical access!

- Complete unit in brass fixture -!

Lilliehorn et al. Sens. Act. B 106 (2005) 851!

Capture and release of particles!

Lilliehorn T. et al, Ultrasonics 43(5) (2005) 289-299 !
Lilliehorn et al. Sens. Act. B 106 (2005) 851!



Temperature control!

Nilsson M. et al Anal.Chem. 2007, 79, 2984-2991 

•! The temperature was measured using 
the temperature dependent 
fluorescence of 0.1 mM Rhodamine B!

•! The temperature increase above room 
temperature is plotted against (Piezo 
drive voltage)2!

On-line yeast culturing in the acoustic trap!

Nilsson, M. et al Analytical Chemistry, 2007, 79, 2984-2991 

•!Culturing temperature stability 
is controlled by acoustic input 
power!

•!Continuous supply of fresh 
media!

•!Proliferation during 6 hours!



Neural stem cell viability!

GGFFPP  NNeeuurraall  sstteemm  cceellll  vviiaabbiilliittyy  
tteesstt,,    
((aa))  00  mmiinn  ((bb))  1155  mmiinn  ccuullttiivvaattiioonn  
aanndd  tthheenn  ssuuppppllyy  ooff  aaccrriiddiinnee  
oorraannggee  tthhrroouugghh  ssiiddee  cchhaannnneellss..  
TThhee  ttrraannssppoorrtt  ooff  aaccrriiddiinnee  oorraannggee  
iinnttoo  cceellllss  iinnddiiccaatteess  vviiaabbiilliittyy..  

Nilsson, M. et al Analytical Chemistry, 2007, 79, 2984-2991 

Erythrocyte ATP release!

•! ATP in the blood mediates vascular diameter 
•! Erythrocytes (Red blood cells) make up 45 % 

of blood volume 



Erythrocyte perfusion and"
detection system!

•! Acoustic non-contact trapping and 
continuous perfusion!
•! Chemiluminescent Luciferin/

Luciferase reaction for ATP 
detection!

Capture of particles"
- Hydrodynamic focusing -!

•!Eliminate loss of material to the 
side channels!

Nilsson, M. et al Analytical Chemistry, 2007, 79, 2984-2991 



Microfluidic layout!

•! 1 µl/min flow rate !
•! Trapping phase!
•! Centre stream: isolated RBCs!
•! Hydrodynamic focusing with PSS 

(Physiological saline solution)!
•! PSS wash phase!
•! Luciferin/Luciferase (L/L) phase!
•! L/L stream from side inlet!
•! Stimuli injected to L/L stream "

(off-chip)!

Experimental set-up!

•! Rotating holder for PMT and USB-
microscope!

•! Chip mounted in holder underneath !
•! Light screening!



Response curves: RBC lysis!

•! On lysis the RBCs release all ATP!
•! Evaluates system sensitivity!
•! L/L mixed with MilliQ water (osmosis)!
•! L/L injected with 1 % TritonX-100 (detergent)!
•! Intensity dependent on age of the erythrocytes and size of cluster!

Osmosis! Detergent!

Response curves: Adrenaline!

•! 10 µM adrenaline injected!
•! Hormone and 

neurotransmitter!
•! Fight or escape situations - 

boosts oxygen supply and 
increases heart rate!

•! High but physiologically 
relevant concentration!



Acoustic Differential Extraction (ADE) for 
DNA analysis of sexual assault evidence 

•! Almost all states in the USA require that convicted 
offenders are DNA-typed (STR typing)!

•! Huge sample backlog of sexual assault cases in the 
US!
–!   ~ 350 000 

United States Cong. House. 107th Cong.  H. R. 3961, 2002. 
Report to the Attorney General on Delays in Forensic DNA Analysis.  NIJ.  2003. 
Lovrich NP, et al.  National Forensic DNA Study Report. 2004.   

The sample!

•! The sexual assault sample collected from the 
victim consists of!
–!  Male sperm cells (Perpetrator)!
–!  Female epithelial cells (victim)!
–!  Female cell lysate (free female DNA)!

•! The male and female DNA is isolated!
–!  Purification and enrichment of the male fraction is 

necessary to obtain a DNA profile of the suspect!



Laminar flow valving!

B – Buffer flow!

S – Sample inlet!

G1 – Valve control 1!

G2 – Valve control 2!

Trapping/Washing! Sperm cell release!

Evander et al. MicroTAS Conf. 2006!Norris, Evander et al. Anal. Chem. 2009, 81, 6089!

Flow simulations 

•! COMSOL simulations was used to find the 
velocities to control the valves. 

Evander et al. MicroTAS Conf. 2006!Norris, Evander et al. Anal. Chem. 2009, 81, 6089!



Acoustic trapping, washing and 
hydrodynamic valving 

Evan’s blue (dye) = female DNA 
Polystyrene beads (10 µµm) = sperm cells 

Evander et al. MicroTAS Conf. 2006!Norris, Evander et al. Anal. Chem. 2009, 81, 6089!

Purifying the sample 

Video of sperm cell capture and release 

Flow direction 

Evander et al. MicroTAS Conf. 2006!Norris, Evander et al. Anal. Chem. 2009, 81, 6089!



Purity of Recovered Product!

•! Highly enriched male and female fractions!

!                 Percent Male         Percent Female!
Original Sample: ! !5.1 ± 0.5 % !94.9 ± 9.3 %!
Enriched male fraction: !85.4 ± 5.7 % !14.6 ± 1.0 %!
Enriched female fraction: !0.5 ± 0.04 % !99.5 ± 8.0 %

1Horsman KM, Hickey JA, Cotton RW, Landers JP, and LO Maddox, Journal of Forensic Sciences., 2006, 4, 131-5.!
Evander et al. MicroTAS Conf. 2006!Norris, Evander et al. Anal. Chem. 2009, 81, 6089!

Capillary trapping 



Borosilicate !
capillary!

Piezoelectric !
transducer!

Off-the-Shelf capillaries for acoustic 
trapping!

•! No clean-room fabrication!
•! Single-use applications!
•! Trapping occurs over the 

transducer!
•! Damping localize the field in 

the flow direction!

CCrroossss--sseeccttiioonnaall  ooppttiiccaall  iimmaaggee  
!""#$%#

Hammarström et al. Lab. Chip. 2010 accepted!

Single – multinode trapping!

•! Large number of 
capillaries evaluated!

•! Note: Manufacturer 
states ± 10% 
dimensional variation!

200 x 2000 µm!

100 x 2000 µm!

100 x 1000 µm!

Hammarström et al. Lab. Chip. 2010 accepted!



Single – multinode trapping"
Simulation!

•!COMSOL simulation!
•!The slightly bulging 

walls should be taken 
into consideration (left)!

•!In excellent agreement 
with experiments!

200 x 200  !

100 x 200  !

100 x 100  !

Hammarström et al. Lab. Chip. 2010 accepted!

The trapping pipette 
(Trapipette™, Trapette™, Pipettrap™ or TripTrap™?:-) 

•! Multiple transducers 
•! Aspirate/dispense 

Hammarström et al. Lab. Chip. 2010 accepted!



 Volume reconstruction from confocal 
microscopy shows cluster conformation!

•! Beads collected in channel centre!
•! Volumetric calculation gives ~500 000 cells!

Confocal volume scan:!
Green channel – 4.2 um 
FITC (bead cluster)!
Red channel – reflective data 
(capillary walls)!

Hammarström et al. Lab. Chip. 2010 accepted!

System Workflow 



Automated trapping of cells 

•! Automation 
•! Aspiration perfusion 
•! Defined number of 

cells  
•! Temporal resolution 

Proof of principle experiment 

•! 10 uL Blood diluted x 
10 PBS 

•! Impermeable peptide 
at 40 uM  

•! Membrane binding 
small molecule 
at 2 uM 

Acoustic trapping -> wash -> lysis -> ISET -> MALDI MS!



Peptide Drug Peptide!Differential peaks 

MALDI MS read-out  



Questions? 
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c+&8'A4+,,'!&*+!\$4)'+8!&28!*+/&52+8!52!/#+!4+2/*+!$\!/#+!4#&22+,!
=>!%+&2'!$\!&2!&4$)'C4!*&85&C$2!?#5,+!/#+!=)D+*!5'!'+I)+2C&,,>!
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B):)'/''$2!K0`!e=+*:!(0!c0`!3?f*8G<5,''$2!BG10!g0`!&28!(&)*+,,!"0`!154*$4#5%!B4/&!LMNNOP!QRSTMROFMUU!

H$*h]$?!

Q0!B4)'/$.#$*+C4!!
'&%.,+!.*+.&*&C$2! M0!154*$])5854!'$,58G.#&'+!

+E/*&4C$2!

3&%.,52:!
i)/,+/'!

3&%.,+!52!

H&'#`!9,)C$2!$*!!!
$/#+*!,5I)58'!

")*2G$;+*!&28!!
&2&,>j+!?5/#!
1B(-7!G!13!



K*5245.,+!$\!739"G!'&%.,+!.*+.&*&C$2!&28!
1B(-7!*+&8$)/!

1.! Sample 
2.! Wash 
3.! Elute & matrix 
4.! MALDI 

k*$2/'58+!$\!739"! c&4h'58+!$\!739"!?5/#!1B(-7!'.$/'!

1B(-7G.,&l$*%!528+.+28+2/!52/+*\&4+'!
3/&28&*8!)GC/*+!.,&/+!;&4))%!
52/+*\&4+!

Bc7A345+E! H&/+*'!

c*)h+*!SVG.$'!739"!

SVG.$'!739"!

ORG.$'!739"!

K*$/$/>.+'!=>!m+371!%=d!!

B8&./+8!\$*!'/&28&*8!1B(-7G/&*:+/!

 



a$%.&*5'$2!739"!;'0!a$%%+*45&,!'/&28&*8'!

SPE processing of a 2D-gel spot digest (Annexin) 
10 ul processed with each preparation technique 

ISET 

ZipTip 

MassPREP 

Dried droplet 

ISET MALDI-spot confinement 

3/&28&*8!*$=$C4!'&%.,+!
.*$4+''52:!$2!739"!

•! bead loading -> sample loading -> wash -> elute & crystalise  



a&**>!$;+*!4$2/*$,!

<$/+!/#&/!>G&E5'!'4&,52:!5'!2$*%&,5j+8!/$!QYNNN!4$)2/'0!

K+.C8+!KQ!'.5h+8!52!52,+/!Q!&28!K+.C8+!KM!52!52,+/!n!

S!!!!!!!!Y!!!!R!

Q!!!!!!!!!n!

i)/,+/!R!

i)/,+/!Y!

i)/,+/!S!

i)/,+/!Y!

.d!O!

.d!QM!

b+8)4C$2!$\!4$%.,+E5/>!

o+*>!\+?!4$%%$2!.+.C8+'!.*+'+2/!52!/#+!\*&4C$2'p!

Sequential elution of Human plasma peptides captured on the surface 
of ion-exchange (SAX) beads  

H!!!!!!H!!!!!!!H!!!!!!.dR!!!.dO!!.dR!!!.dQM!!.dR!!!

.dR!!!.dO!!.dR!!!.dQM!!.dR!!!

H!!!!!!H!!!!!!!H!!!!!!.dR!!!.dO!!.dR!!!.dQM!!.dR!!!

.dR!!.dO!!!.dR!!!.dQM!!.dR!!!
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B458!+,)C$2!
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=+&8'!
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a+,,!?&'#52:!=>!'+I)+2C&,!=)D+*!'#5J52:!
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4&'+'!5/!5'!8+\+4/'!52!/#+!%&,+!/#&/!4&)'+!/#+!\&5,)*+!/$!4$24+5;+0!!

•! "#+!)28+*,>52:!=5$4#+%54&,`!%$,+4),&*!&28!:+2+C4!4&)'+'!&*+!.$$*,>!
)28+*'/$$80!

•! -*$..52:!=5*/#!2)%=+*'!5'!&!#):+!'$45+/&,!.*$=,+%0!
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B4$)'C4!MG'/+.!=)D+*!+E4#&2:+!

Flow rates: 
Sample in and out 50 !l/min 
Wash fluid: 100 to 200 !l/min 
Reynolds number: ~10 

P. Augustsson, J. Persson, S. Ekstrom, M. Ohlin and T. Laurell 
Lab On A Chip, 2009, 9, 810–818 

c+&8!?&'#!+_45+24>!
G!9;&,)&/+8!)'52:!9;&2'!c,)+!4$,$)*!4$%.$)28!GQ!

Efficiency: (In-Out)/In 
Evans blue: 30 mg/ml 
Bead number: ~6M/ml 
Bead diameter: ~5!m 
Solid content: ~0.05 % 

99.950

99.960

99.970

99.980

99.990

100.000

Manual wash
3x

Wash unit I Wash unit II Serial wash
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(N=5) 
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L6:
Bioanalysis:

Enhanced immunoassays
d l ti ti  and agglutination assays

Martin Wiklund
Dept  of Applied Physics
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CISM course ”Ultrasound standing wave action on suspensions 
and biosuspensions in micro- and macro fluidic systems”,

June 7-11, 2010

Outline

1. Agglutination-based methods

2. Fluorescence-based methods

M. Wiklund

-2-
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What is an immunoassay?

- A method for identification and/or quantification of 
specific proteins or other biomolecules

- The method uses the interaction/binding of 
antibodies to antigens (often proteins)

- The assay is often designed to bind the analyte
(the target protein) onto a solid support

- The solid support can be
a surface (functionalized
surface = antibody-

M. Wiklund

-3-

y
coated surface)

- Or, the solid support can
be beads (functionalized
polymer microspheres)

Building blocks of an immunoassay

Agglutination-based bead assays

M. Wiklund

2004-04-23
-4-
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The Latex Agglutination Test (LAT): 
History

First LAT in 1956 (Singer and Plotz):First LAT in 1956 (Singer and Plotz):

0.8 µm polystyrene latex particles (beads) coated with 
human gamma globulin (HGG) were clumped when mixed 
with serum from patients having rheumatoid arthritis

Today, same or smaller bead sized are used (0.01-0.8 µm)

M. Wiklund

2004-04-23
-5-

Today, same or smaller bead sized are used (0.01 0.8 µm)

The Latex Agglutination Test (LAT): 
Principles

Detection (yes/no): 
Visual
A: Positive, B-G: Negative

LAT kit

M. Wiklund

2004-04-23
-6- From: http://www.rapid-diagnostics.org/tech-agglut.htm
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The Latex Agglutination Test (LAT): 
Quantification?

Quantification methods (except for the visual ”yes/no”):

-Turbidimetry (forward scattered light), <1 µm beads
(Litchfield et al., Clin. Chem. 30, 1489, 1984)

-Nephelometry (side scattered light), <1 µm beads
(Kapmeyer et al., J. Clin. Lab. Anal. 2, 76, 1988)

-Particle counting detectors
(decrease in counting rate),
>1 µm beads

(Masson, J. Pharmaceut. Biomed.
5  113  1987)

M. Wiklund

2004-04-23
-7-

5, 113, 1987)

-Flow cytometry, >1 µm beads
(Wiklund et al, Anal. Biochem.
338, 90, 2005)

The Latex Agglutination Test (LAT): 
Performance, limitations

Typical detection limit: nM rangeTypical detection limit: nM-range

Why?

- Relatively high particle concentrations are needed for 
sufficiently high particle collision rates

- Relatively small particles (<1 µm) are needed for 
sufficiently high diffusion rates

M. Wiklund

2004-04-23
-8-

sufficiently high diffusion rates

- Small particles are associated with spontaneous 
agglutination (non-specific agglutination)
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What can be enhanced with USW technology?

W   i  th  b bilit

The Latex Agglutination Test (LAT): 
Ultrasonic enhancement

We can increase the probability
of bead collisions!

M. Wiklund

-9-

- Enhanced speed (~min)
(Grundy et al., J. Immunol. Methods
165, 47, 1993)

- Enhanced sensitivity (~0.1 nM)
(Grundy et al., J. Immunol. Mehtods
176, 169, 1994)

What can be enhanced with USW technology?

W   i  th  b bilit

The Latex Agglutination Test (LAT): 
Ultrasonic enhancement

We can increase the probability
of bead collisions!

Device (developed in the Coakley group):

Commercial device:
”Immunosonic”
from EMS

M. Wiklund

-10-
Target application:
Bacterial Meningitis

REVIEW: M. Wiklund et al., Lab Chip 6, 1279 (2006)
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What can be enhanced with USW technology?

W   i  th  b bilit

The Latex Agglutination Test (LAT): 
Ultrasonic enhancement

We can increase the probability
of bead collisions!

The trick is to reduce the
concentration of beads!

M. Wiklund

-11-

- Enhanced speed (~min)
(Grundy et al., J. Immunol. Methods
165, 47, 1993)

- Enhanced sensitivity (~0.1 nM)
(Grundy et al., J. Immunol. Mehtods
176, 169, 1994)

How?

Trick:

I  th  iti it  b  d i  th  b  f

Ambient analyte conditions
in immuno-agglutination assays

Increase the sensitivity by decreasing the number of
available binding receptors (=capture antibodies)

The term ”ambient analyte
conditions” was first pro-
posed by Roger Ekins
(R. P. Ekins, J. Pharm. Biomed.
A l  7  155  1989)

M. Wiklund

-12-

Anal. 7, 155, 1989)

Ekins used the concept in
microspot array technology
(R. Ekins, Ann. Biol. Clin.
50, 337, 1992)
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Modelling of the reaction kinetics
Antibody (A) – antigen (Y) interaction:

k

k
A Y AY





  /K k k 

A
AY

Y N
N

K


Amount of A-Y complexes on particle surface:

Concentration of free analyte (antigen), Y, in the medium:

M. Wiklund

2004-04-23
-13-

   2
0 0 0 0 0

1 1 4
2 2

Y I Y K I Y K KY       

 0 1 max0I n Nwith

initial conc. of receptors initial conc. of singlets

binding capacity of the particle

Modelling of the reaction kinetics
• Initial stage of immunoagglutination (”doublet formation”)

Particle – particle interaction:
f

   
1

1 1

1, ,
2

i
i

i j j i j
j j

dn
k i j n n k j i j n n

dt

 


 

    

von Smoluchowski kinetics (coagulation theory):

ijk

i j i jL L L  
rate constant of agglutination
(assumed to be irreversible)

M. Wiklund

2004-04-23
-14-

where ni(t) is the concentration of a cluster containing i particles
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Modelling of the reaction kinetics
• Initial stage of immunoagglutination (”doublet formation”)

Particle – particle interaction:
fijk

i j i jL L L  
rate constant of agglutination
(assumed to be irreversible)

Cluster kinetics (singlets, doublets, triplets):

   21
1 1 2 1 31,1 1, 2 (1,3)dn

k n k n n k n n
dt

   

M. Wiklund

2004-04-23
-15-

     

 

2 22
1 1 2 2 2 3

23
1 2 1 3 2 3 3

1 1,1 1, 2 2, 2 (2,3)
2

1, 2 (1,3) (2,3) (3,3)

dn
k n k n n k n k n n

dt
dn

k n n k n n k n n k n
dt

   

   

Modelling of the reaction kinetics
• Initial stage of immunoagglutination (”doublet formation”)

Particle – particle interaction:
fijk

i j i jL L L  
rate constant of agglutination
(assumed to be irreversible)

The rate constants, kij:

1 1 1
     , 1,1D Dk i j k

M. Wiklund

2004-04-23
-16-

     , , ,D rk i j k i j k i j
    , 1,1D Dk i j k

  81,1
3

B
D

k T
k


      , , ,r h Dk i j ijc i j k i j

rate of collision (diffusion-limited) rate of binding

probability of agglutination per one collision

steric hindrance
coefficient
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Modelling of the reaction kinetics
The beta parameter (probability of agglutination per one collision):

3/ 2
1 1A AYN N f 

amount of occupied binding sites per particle

max A AYN N N 

2

24
b

f
R


 

2
1 1 max2

/
1 /

A AY

K Y
N N N

K Y




with amount of free binding sites per particle
amount of occupied binding sites per particle

surface fraction of a binding site

radius of a
binding site

radius of the
particle

M. Wiklund

2004-04-23
-17-

     , , ,r h Dk i j ijc i j k i j

rate of binding

probability of agglutination per one collision

steric hindrance
coefficient

0max 0max
1
2

Y I K 

Max. analyte conc:

Agglutination probability:
Plot the beta parameter vs. Y0

M. Wiklund

2004-04-23
-18-
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Varying the affinity of the immunoassay

Agglutination probability:
Plot the beta parameter vs. Y0

M. Wiklund

2004-04-23
-19-

Varying the particle (=receptor) concentration

Agglutination probability:
Plot the beta parameter vs. Y0

M. Wiklund

2004-04-23
-20-



11

Detection limit
What about the detection limit?

Is typically defined by the amount of non-specific agglutination
(background noise)

     
1

1, 1 1,1
, D

h

k i j k
ijc i j 


 

    

(background noise)

Let’s expand the model to include non-specific agglutination:

where  is the probability of non specific agglutination

M. Wiklund

2004-04-23
-21-

where  is the probability of non-specific agglutination
(assume constant)

and  is the probability of specific agglutination
(as previously defined)

Agglutination probability:
Non-specific () and specific () vs. Y0

M. Wiklund

2004-04-23
-22-
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Using the model to fit
experimental data

Purpose:
To optimize an agglutination assay in terms of sensitivity,
dynamic range, etc.

• Particles: 0.9 m fluorescent, streptavidin coated
• Analyte: Biotinylated monoclonal antibody, 6.2 biotin 

molecules per antibody

M. Wiklund

2004-04-23
-23-

Analyte concentration dependence 
on immunoagglutination

Max. specific agglutination

M. Wiklund

2004-04-23
-24-

(Wiklund et al, Anal. Biochem. 338, 90, 2005)

p gg

Non-specific agglutination
(background noise)
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Fitting the exp. data to the model

• Compare the particle and analyte concentrations at maximum 
agglutination rate with the number of receptors on the particles

M. Wiklund

2004-04-23
-25-

Maximum three antibodies per particle-
immobilized streptavidin molecule
(fourth site unavailable due to steric 
hindrance)

Compare the non-specific and 
specific agglutinations

• Results: beta / alpha ≈ 10 (or even less)
biotin-binding site (on streptavidin molecule)
= 0.4 nm

Steric hindrances of biotin at particle-particle
interaction

M. Wiklund

2004-04-23
-26-

Typical detection limit of an immuno-agglutination assay:
100 pM (M. Wiklund et al., Lab Chip 6, 1279, 2006)
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Enhanced particle sensors

- Driving cells/spores to a 
surface in a λ/4-channel

- Antibody-coated surface

J. J. Hawkes et al.,
Biosens. Bioelectron.
19, 1021, 2004

body oa d u a

M. Wiklund

2004-04-23
-27-

Enhanced particle sensors

Potential:
- Separate specific / non-

specific interactions

P. Glynne-Jones et al., Ultrasonics 50, 235, 2010

p a o
- Measure the binding strength

M. Wiklund

2004-04-23
-28-
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Outline

1. Agglutination-based methods

2. Fluorescence-based methods

M. Wiklund

-29-

Fluorescence-based bead assays

M. Wiklund

-30-

Traditional surface-
based assay

Alternative bead-
based assay
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Valid for both agglutination assays and fluorescence assays!

Ambient analyte conditions

Microspot fluorescence assay Agglutination assay

M. Wiklund

-31-

Decrease the spot size

Decrease the bead conc.

Fluorescence-based bead assays

M. Wiklund

-32-

Problem with microspot assays:
- Expensive
- Inefficient surface reactions
- Limited sample volumes

Advantage with bead assays:
- Cost-effective
- Fast solution-phase kinetics
- Easy to scale (reagents)

High sensitivity?
Few capture antibodies
 few beads!
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Increased sensitivity by reducing the concentration of 

Fluorescence-based bead assays:
Ultrasonic enhancement

• Increased sensitivity by reducing the concentration of 
particle-immobilized receptors

• Developed for screening of microtiter plates

Idea:
Enrich microparticles into 
the scanning plane of the 
laser focus

M. Wiklund

-33-

Test assay:
Thyroid stimulating 
hormone (TSH) assay

Fluorescence detection – confocal or two-photon excitation (TPX)

Fluorescence-based bead assays:
Two-photon (TPX) or confocal fluorescence 

detection

Typical
sensitivity: 
~pM

p ( )

Hänninen et al,
Biophys  Chem

M. Wiklund

-34-

Biophys. Chem.
105, 23 (2003)
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Fluorescence-based bead assays:
Ultrasonic enhancement

M. Wiklund

-35-
(M. Wiklund et al., J. Appl. Phys. 96, 1242, 2004)

Fluorescence-based bead assays:
Ultrasonic enhancement

Motivation

• Re-arrangement of the suspended particles into single 
layers

• Horizontal scanning of a confocal laser focus on this 
layer

M. Wiklund

-36-
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Model assay: Thyroid-stimulating hormone (TSH)-assay

Fluorescence-based bead assays:
Ultrasonic enhancement

Sensitivity:

20 fM

Wiklund et. al.
(J  Appl  Phys  2004)

M. Wiklund

-37-

(J. Appl. Phys. 2004)

Optimizing sensitivity

Trick: low conc. of analyte  low conc. of capture antibody
(R. Ekins et al. Anal. Chim. Acta, 227, 73-96, 1989)

M. Wiklund

-38-

Measure for a fixed
analyte concentration,
vary the bead concentration
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• 20 fM analyte, 2.5x104 mL-1 bead concentration
=> ~480 molecules per bead in sample

Optimizing sensitivity

 480 molecules per bead in sample

• Theory: Ka ~1010 M-1, 106 receptors per bead
=> ~140 bound molecules per bead (~30%)

• Detection limit, confocal fluorescence system:
100 fluorophores per bead

M. Wiklund

-39-

How does it work in practice?
Example 1: - high analyte concentration

- normal reagent concentration

Optimizing sensitivity

• Sample of 
proteins

• Add capture 
beads

• Add fluorescent 
tracer

• Incubate

M. Wiklund

-40-

Incubate

• Enrich beads 
with ultrasound

• Read out
(confocal micr.)
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How does it work in practice?
Example 2: - low analyte concentration

- normal reagent concentration

Optimizing sensitivity

• Sample of 
proteins

• Add capture 
beads

• Add fluorescent 
tracer

• Incubate

M. Wiklund

-41-

Incubate

• Enrich beads 
with ultrasound

• Read out
(confocal micr.)

How does it work in practice?
Example 3: - low analyte concentration

- low reagent concentration

Optimizing sensitivity

• Sample of 
proteins

• Add capture 
beads

• Add fluorescent 
tracer

• Incubate

M. Wiklund

-42-

Incubate

• Enrich beads 
with ultrasound

• Read out
(confocal micr.)
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Summary

• The immuno-agglutination assay
Detection limit: >1 nM without ultrasonic enrichmentDetection limit: >1 nM without ultrasonic enrichment

~100 pM with ultrasonic enrichment 

• The fluorescence-based bead assay
Detection limit: 2 pM without ultrasonic enrichment

~20 fM with ultrasonic enrichment

M. Wiklund

2004-04-23
-43-
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TheoryTheory

• Gor’kov’s* theory:
– time-averaged acoustic force acting on a compressible, spherical 

suspended particle in an arbitrary acoustic field

– Force potential:
2

3 2
1 22 2

1 12
3 2S F

F F

p
U r f v f

c
π ρ

ρ

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

2

2

1 1
ss

ff

c

c
f

ρ
ρ

−=
)2(
)(2

2
fs

fsf
ρρ
ρρ

+

−
=

where 2 2,p v
mean square 
fluctuation of fluid 
pressure and velocity

– Force: UF −∇=

L.P. Gor’kov, Doklady Akademii Nauk Sssr, 140, pp.88-92, 1961
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NumericalNumerical ModellingModelling
J. Wang et al.J. Wang et al.

• The existing analytical solutions cannot determine the acoustic 
forces under more complex system conditions such as 

– proximity to the chamber wall, 
– complex viscous function, 
– acoustic streaming and 
– complicated particle shapes.

• Numerical modelling may become a powerful tool.

Ref. Numerical simulations for the time-averaged acoustic forces acting on rigid cylinders in ideal and 
viscous fluids, Wang JT, Dual J, JOURNAL OF PHYSICS A-MATHEMATICAL AND 
THEORETICAL Volume: 42 Issue: 28, JUL 17 2009

CISM2010, Lecture 6 Dual 

Governing equationsGoverning equations

• Equations for the host fluid (N-S equations)

• Time-averaged force

0

( )
0

i

i

i j iji

j

u

t x

u uu

t x

ρρ

ρ σρ

∂∂
+ =

∂ ∂

∂ +∂
+ =

∂ ∂

2
3

ji k k
ij ij ij ij

j i k k

uu u u
p

x x x x
σ δ η δ ξ δ

⎡ ⎤⎛ ⎞∂∂ ∂ ∂
= − + − +⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

2
0 0 0( )p p c ρ ρ= + −

0

0di ij j

S

F n Sσ=< − >∫

The angular bracket means average over one or several periods of the sound wave 
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Our numerical method: Our numerical method: 
2D 2D -- implementationimplementation

• Solve an initial value problem with given boundary conditions.
• FVM (Finite Volume Method) based on triangular meshes with 

Jameson difference method (AIAA paper 85-0435 ). (space 
discretization)

• Fourth-order Runge-Kutta algorithm. (time discretization)

• Comparison with
– Haydock’s theoretical solution

• No viscosity, no boundaries, Only cylinder particle, R/λ<<1.
– Haydock’s Lattice Boltzmann method (LB)

• Only for viscous fluid, difficulties on boundary conditions, 
• Very high computational effort, sometimes not very accurate.

– COMSOL
• Inviscid/viscous fluid, arbitrary particle shape, only reflecting boundary
• High computational effort.

CISM2010, Lecture 6 Dual 

Numerical simulationsNumerical simulations

• Simulations for inviscid fluid

Geometrical configuration 

The length of the computational 
region is Lx = λ (wavelength) 

Initial conditions: The wave is 
initialized as 
ρ = ρ0 + dρcos(kx) and zero 
fluid velocity field u = 0, where k
is the wave vector, ρ0=1.0 and 
dρ = 0.01. 

Boundary conditions: Left: ρ = 
ρ0 + dρcos(ωt) 
Right: reflecting condition ux = 0 
Top and bottom: uy = 0 
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-375.30-384.22-247.20-265.70375500100080

-105.15-108.41-81.02-77.85375200100040

-21.17-21.13-25.12-19.79375200100020

-5.17-5.13-8.20-4.95375100100010

-1.25-1.22-3.04-1.2437510010005

FFVM (10-5)FCOM (10-5)FLB (10-5)Fth (10-5)hLyLxR

Density varying in first 5 cycles

Fth: analytical solutions (Haydocks, Journal of Physics A (38), 2005, pp. 3279), FLB: calculated by LB method (Haydocks, Journal of 
Physics A (38), 2005, pp. 3265), FCOM: calculated by COMSOL (a commercial FEM software package), FFVM: calculated by our FVM 
program

The history of pressure on the cylinder for 200 cycles

•Results

CISM2010, Lecture 6 Dual 

The PML (Perfectly Matched Layer) scheme is one of the popular artificial 
non-reflecting boundary conditions. The key idea of PML is to add an extra 
region (PML) outside the original computational region, into which the 
outgoing waves are allowed to propagate without any reflections and then 
dissipated entirely. 

•Perfectly Matched Layers
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Ratio of forces with/without 
viscosity versus viscosity at the 
cylinder position h = 375 and Lx = 
1000 with PML.

The mean force on a certain radius cylinder will 
increase due to the fluid viscosity as described by 
Dojnikov.

The viscosity influences the mean forces more 
significantly for small cylinders at a certain wave 
frequency, which is also described by analytical works.

The reason is that the larger value of δ/R implies 
more significant viscous effects. The value of the 
variable δ/R reaches 6.07 when ν = 1.67 and R = 5, 
whereas it is merely 0.38 for R = 80

•Viscosity

acoustic boundary 
layer 

δ = (2ν/ω)1/2

CISM2010, Lecture 6 Dual 
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Standing wave

Expand with 
Bessel functions 
in the two 
coordinates 
respectively

Total acoustic field
Final solutions

With Graf’s additional theorem

ρ0 = 1.0 , ν = 0.0167 , 

λ= 1000, h=375,  dρ = 0.01,

c0 =1/sqrt(3) and R = 20.

Comparisons of the exact, approximate 
and numerical results ka = 0.063

Calculations for acoustic radiation force acting on a cylinder 
near a flat wall in a standing wave excitation in an ideal fluid
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• Piezo transducers are used to excite 
a glass plate 

• This results in a bending mode of 
vibration

• A pressure field results in the fluid 
layer 

• One or two elements can be excited

Experiments: Glass plate deviceExperiments: Glass plate device
A. Haake et al.A. Haake et al.
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Glass plate deviceGlass plate device
Single Particle Motion, side viewSingle Particle Motion, side view
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View of whole device
HL60 cells
After 48 seconds

Field of view: 0.67 × 0.56 mm 
MCF10A cells
Real time

Glass plate device  Glass plate device  -- Line forming, 1Line forming, 1--D D 
with G. with G. RadziwillRadziwill, Medical Virology, USZ, Medical Virology, USZ

CISM2010, Lecture 6 Dual 

Flexural plate deviceFlexural plate device
-- Clump forming, 2Clump forming, 2--D D 

View of whole device
HL60 cells
After 110 seconds

Field of view: 1.75 × 1.5 mm 
HL60 cells
Real time
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MovingMoving ParticlesParticles

• 3 Possibilities:

•Moving plate device •Ramping frequency
•-> Bead Sweeper

•Changing relative 
voltages on opposite
electrodes

CISM2010, Lecture 6 Dual 

MiniaturizationMiniaturization
S. Oberti, A. Neild et al.S. Oberti, A. Neild et al.

• Motivation for miniaturization
– Most applications require a closed system (Cell sorting, Cell fusion, 2-D 

testing array for reaction analysis)
– If focus on cells, large magnification limits field of view
– Possibility of integration into Lab-on-a-chip devices
– Higher repeatability is needed and is obtainable through better defined 

boundary conditions, thus more accurate manufacturing is needed

• Characteristics which ought to be retained
– Possibility to collect particles in lines in either of two directions or 

clumps depending on actuation
– The device should be able to operate in a no-flow condition
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MicrofluidicMicrofluidic channel device channel device 
-- DescriptionDescription

x
y

z

12 mm

5 mm

200 µm
1 mm

500 µm
300 µm

700 µm

x
y

The structure is 25 mm long, and 
supported at each end.

The lower electrode of the 
piezo is cut so that a strip 
is created at one end which 
is 700 μm wide

3 layers:
Upper  – Glass 1mm thick
Middle – Si 0.3 mm thick, 12 mm wide
Lower  – Piezo, 0.5 mm thick, 5mm wide,

polarized in the vertical direction, 
electrodes on upper and lower 

surfaces

Fluid Channel etched in Si, 200 μm deep,
5mm wide.

CISM2010, Lecture 6 Dual 

Femlab: commercial partial differential 
equation solver with meshing facilities

Boundary conditions used were: 
-Free displacement at all external edges 
-Fluid structure interaction
Variables are: pressure (p, fluid) and 

displacement vector (u, solid) 
Force balance        Solid module 

Area Load can be applied

Equate velocities Fluid module
Normal Acceleration can be applied

-Electrical
upper electrode: ground
lower larger electrode: ground
lower strip electrode: a.c. voltage 

MicrofluidicMicrofluidic channel device channel device 
-- ModelingModeling

Damping was applied using complex 
stiffness parameters for solids, and 
wave speed for the fluid.

A mesh of 6000 triangular elements was 
found to be sufficient.

s
fn t

AF
∂
∂

−=
φρ pnAF sn −=/

ssn nv .φ∇−= ( ) ns
f

s an
p

nu =
∇

−=− ..2

ρ
ω
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MicrofluidicMicrofluidic channel device channel device 
-- Result at 1.25MHzResult at 1.25MHz

This is done within Femlab by using the equations given by Gor’kov.

Force field 
(Zoomed)

Pressure

CISM2010, Lecture 6 Dual 

Pressure plotted over a range of frequencies, across the area of the 
device

• Pressure amplitude:   0.8 MPa
• Displacement amplitude: 20  nm   
• Force amplitude: 0.2 nN

MicrofluidicMicrofluidic channel device channel device 
-- Pressure fieldPressure field

x

freq

y

Freq,
MHz

mm

Freq,
MHz

Freq,
MHz

mm mm

Frequency range:
1 to 1.7 MHz
0.002 MHz steps
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MicrofluidicMicrofluidic channel device channel device 
-- Simulation Simulation vsvs ExperimentationExperimentation

Major resonances  (1.0 to 1.7 MHz)

121.69121.69

101.59101.58

11     Static1.52111.54

101.42101.40

9       Static1.2491.25

9       Static1.2071.22

81.1281.12 

81.0881.08

41.05

No. of linesFrequency (MHz)No. of linesFrequency (MHz)

Simulation                                                      Experiment

If a signal is applied across the whole plate the three frequencies 
which worked under static conditions do not occur

Experiments used 26 μm diameter copolymer beads.
Frequency steps of 0.01 MHz. Fluid flow used.
No reference was made to simulation results.

CISM2010, Lecture 6 Dual 

MicrofluidicMicrofluidic channel device channel device 
-- Example experimental results 1Example experimental results 1

Lines of 26 μm diameter copolymer beads, formed in a non-flowing fluid.

1.24 MHz 1.52 MHz
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Requirements:
• concentration of particles in a 

single line along the center of 
the channel

• allow access to the positioned 
particles

• operate with non-flowing fluid

well

glass

cavity

silicon

piezoelectric

support structure

1 mm Open ended channel1 mm Open ended channel

CISM2010, Lecture 6 Dual 

-9.7 nm +7.7 nm

Vertical displacement:

- 1.8 bar + 2 bar

Pressure:

Vertical displacement:

- 4 nm + 4 nm

Pressure:

- 11 bar + 11 bar

Frequency sweep 0.5 to 3 MHz

x (mm)

fre
qu

en
cy

(M
H

z)

0.
78

 M
H

z
2.

08
 M

H
z

2D 2D ModelingModeling
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• MCF10A cells

S. Oberti et al, Nanotech 05

Positioning into 1 line. First, at 0.78MHz to make the cells roughly collect along the
centerline of the channel, then at 2.08 MHz for more accurate positioning

Positioning into 3 lines at 2.08 MHz.

CellCell positioningpositioning

CISM2010, Lecture 6 Dual 

Glass plate, 
where
particles will 
be deposited

support structure

• Angle: ~8°

Experimental Experimental setupsetup
Nelson, et al., IRIS, ETHZNelson, et al., IRIS, ETHZ
Dual, et al. IMES, ETHZDual, et al. IMES, ETHZ



15

CISM2010, Lecture 6 Dual 

1) Random particles

2) Ultrasound (US) ON, 0.78MHz, 
particles approximately in 1 line

3) US ON, 2.08MHz, so 
particles more accurately 
aligned

4) US OFF
5) Gripper in, grab particle, and remove

6) Drop gripper down to a glass slide 
2mm under the device, and change 
focus

7) Release particle

8) Go up with gripper, change focus 
back, US ON and OFF to realign the 
particles, and grip again etc.

74 μm copolymer particles
Speed: 6x

US US positioningpositioning + pick and + pick and placeplace

CISM2010, Lecture 6 Dual 

26 μm diameter copolymer beads
5 mm x 5mm x 0.2 mm chamber
Operation at 1.971 MHz

5 mm 5 mm

0.7 mm

2D 2D manipulationmanipulation in in 
micromachinedmicromachined chamberchamber
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Force equation from Gor’kov:
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9.6 μm diameter 
copolymer beads

Operation at 
2.562 MHz

Real time

Lines and Diagonal Lines and Diagonal orientationorientation
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9.6 μm diameter 
copolymer beads

Operation at 2 
frequencies 
around 2.562 
MHz, differing by 
25 Hz

Lines to Lines to PointsPoints
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ApplicationsApplications

• Pharmaceutical screening

e.g. Subjecting cells to sequences of drugs

CISM2010, Lecture 6 Dual 

ApplicationsApplications: : BeadBead SweepingSweeping

Ultrasonic Bead 
Sweeper:

Collecting Chemicals 
from fluids
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Manipulation of Protein Manipulation of Protein crystalscrystals in in 
channelschannels usingusing ultrasonicsultrasonics and and nylonnylon looploop

CISM2010, Lecture 6 Dual 

• Conventional: sedimentation, centrifugation, magnetic

• Acoustics:
– Advantages: Contactless, can be miniatuized, fast
– Methods:

• Exciting a plate to vibration
• Longitudinal excitation
• Mixture of excitation

– Longitudinal excitation
• Frequency sweep (discrete and continuous)
• Pseudo standing wave

A. Haake, Micromanipulation of Small Particles with Ultrasound, Diss. ETH No. 15681
M. Saito, N. Kitamura and M. Terauchi, Jour. Of Appl. Physics, vol 92, no 12, 12 (2002), pp. 7581-7586
G. Whiteworth, M.A. Grundy and W.T. Coakley, Ultrasonics, vol 29 ,12 (1991), pp. 439-444

••Concentration of particlesConcentration of particles

••D. MöllerD. Möller
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Setup and SimulationSetup and Simulation

• Device for longitudinal, continuous and asymmetric 
excitation

– Enables to move particles close to chamber wall

• 2D simulation
– significant influence of boundaries
– Potential field at off resonance 

frequencies can’t be neglected

Piezo

Pressure field 2.5MHz
dirk.moeller@imes.mavt.ethz.ch

CISM2010, Lecture 6 Dual 

ExperimentalExperimental

• Macro scale chamber
– 25x25x5mm
– Different materials (here: Al)
– Rapid movement with larger particles (26μm 

copolymer)
– Streaming visible with smaller particles
– 1.5 – 2.5MHz at 0.05Hz sweeping rate

• Modularity
– Extendable to 2D excitation
– Introduction of waveguides
– Symmetric and asymmetric excitation possible

dirk.moeller@imes.mavt.ethz.ch
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Rotation of Objects
T. Schwarz

Viscous torque

• rotation of spherical and non-spherical particles (axisymmetric)
• Torque results from viscous effect (acoustic near boundary streaming)

• Maximal torque at 
90° or 270° phase 
lag

• No torque at 0° and 
180° phase lag

[1] Busse, Wang; Torque generated by orthogonal acoustic waves-Theory; J. Acoust. Soc. Am. 96(6), 1981
[2] US Patent 4,800,756; Barmatz et al.; Acoustic Controlled Rotation and Orientation (1989-01-31)

Object

Transducers

Chamber

cylindrical chamber for controlling an object [2]
Acoustic torque as a function of the phase 
difference between the x and y components 
of the pressure oscillation [1]

Torque on an object subjected to the influence of two 
orthogonal acoustic waves with phase lag

CISM2010, Lecture 6 Dual 

Rotation of Objects

Acoustic radiation torque
• Non-spherical particles (fiber), shorter λ/4
• Torque aligns object parallel to nodal pressure 

planes
• Torque originates from the acoustic force 

gradient between the node and the antinode

[1] Brodeur; Motion of fluid-suspended fibres in a standing wave field; Ultrasonics 1991; Vol.29
[2] Yamahira; Orientation of Fibers in Liquid by Ultrasonic Standing Waves; Jpn.J.Appl.Phys 2000; Vol.39

Alignment of polystyrene fibers 
of different length [2]

Yamahira:
• Orientation of fibers in a 

liquid irradiated with 
ultrasound

• reinforcing fibers in the 
molten matrix of a 
composite material 
(enhance mechanical 
properties)

• modification of potential field leads to 
movement (rotation) of object
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Rotation of Objects –
Amplitude Modulation

Schwarz@imes.mavt.ethz.ch

• Generate and control the rotation of micro fibers using ultrasonic standing waves
• Control direction, speed of rotation or angular position

Motivation:

Device:

Glass 
plate

Silicon 
plate Reservoir

Fluidic 
chamber

Piezoelectric 
actuator

Glass support

200 µm

(3x3 mm2)

Piezoelectric actuator:

bottom electrode

Orthogonal 
superposition of 
standing waves 
(x and z direction)

Fluidic chamber with Copolymer particles (Ø = 17 µm);
red area symbolizes the active electrode; f = 1698 kHz

CISM2010, Lecture 6 Dual 

Rotation of Objects –
Amplitude Modulation

• Use of acoustic radiation torque
• Two standing pressure waves in x and z direction
• Control of  the rotation based on the modulation of the 

amplitude of two superposed orthogonal standing waves

Schwarz@imes.mavt.ethz.ch
Schwarz, Petit-Pierre, Dual; Rotation of non spherical particles with amplitude modulation, Proceedings of the 7th USWNet meeting 2009, Stockholm

Visualization of Gorkov’s potential U for 
one wavelength in x and z direction

V
ar

ia
tio

n 
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x

V
ar
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n 
A

z

...amplitudeA
...angular frequencyω
...wave vectork

x z  =  ω ω
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Rotation of Objects –
Amplitude Modulation

λ λ

• Copolymer particles (Ø = 17 µm)
• Frequency f=1689kHz ; max. Voltage 30V

• Glass-fiber Ø= 9 µm ; length = 250 µm
• Frequency f=1085kHz ; max. Voltage 30V

• Change of direction possible
• Speed of rotation up to 30 rpm

Schwarz@imes.mavt.ethz.ch

CISM2010, Lecture 6 Dual 

ConclusionsConclusions

• Numerical Model
• Glass Plate Device

– Lines and Clumps of cells formed
• Microfluidic devices

– Actuation method suitable for miniaturization found, by use of 
piezo plate with a strip electrode

– Femlab model, Comparison of simulated pressure fields with 
experimental work

– Chamber device: Positioning in points, lines, Rotation, etc.
• Fascinating field with a combination of basic questions, 

exciting features and possible applications
• Applications: Cell sorting, Drug screening, Bead Sweeping, … 
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F r = acoustic radiation force
P0 = applied acoustic pressure amplitude
V c = particle volume
βw = compressibility of the liquid
βc = compressibility of the particle
λ = acoustic wavelength
z = particle distance to the node
ρc = density of the particle
ρw = density of the liquid

Acoustic forces on particles in suspension

An acoustic resonant pressure 
field causes particles to move 
towards either the pressure node 
or the antinodes depending on 
the physical properties of the 
particles.

Red blood cells and lipid 
particles are exposed to 
an USW.

RBC are separated from 
lipid particles by acous-
tophoresis.

The laminar flow enables 
discrete collection of 
RBCs and lipids.

Photo of the RBC wash. 
Lipids are exiting through 
the side outlets.

Blood wash

Blood leakage during 
cardiac surgery.

The blood is contami-
nated with lipid particles.

Lipid emboli blocking 
capillaries in the brain.

Plasmapheresis for PSA analysis Free Flow Acoustophoresis (FFA)
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Female whole blood

Acoustic standing waves gather blood cells in the 
pressure node located in the middle of the separation 
channel. Enriched blood cell fractions are removed 
through outlets A-C, thus decreasing the hematocrit 
gradually in the channel. The remaining focused 
blood cells exit through outlet D while the clean 
plasma fraction is withdrawn from exit E.

Schematic of the chip based whole blood plasma-
pheresis and PSA diagnostics: (1) spiking of PSA in 
female whole blood, (2) ultrasonic standing wave 
driven plasmapheresis, (3) plasma collected via in-
jector sample loops, (4) microarraying of PSA anti-
body, (5) microchip incubation in obtained plasma, 
(6) sandwich assay, and (7) fluorescence readout.

Suspended particles of different sizes entering an acoustic 
field. Particles move towards the central pressure node in 
the channel at a rate determined by their acoustic proper-
ties and size.

At the end of the separation channel the flow is 
branched off into 5 consecutive outlets, each 
containing a dicrete subset of the initial par-
ticle mixture.

The FFA separation strategy (described above) has been successfully ap-
plied to polystyrene particles in the 3-10 µm range. A first attempt at 
separating samples of whole blood into fractions of RBCs, platelets and 
WBCs revealed that blood cell fractionation is indeed feasible even 
though complete separation was not achieved. A modified version of the 
device that will dramatically increase the resolution is under develop-
ment.

A mixture containing bovine blood and tritium labeled trigrycerides was 
used to mimic human shed blood. The acoustic blood wash system  was 
able to remove ~90% of the lipid patricles while retaining ~90% of the 
erythrocytes.

Affinity extraction on a chip

Lund University, SWEDEN
Andreas Lenshof, Per Augustsson, Carl Grenvall and Thomas Laurell

MICROCHANNEL ACOUSTOPHORESIS FOR MANIPULATION OF CELLS AND PARTICLES

The quality of the plasma fulfilled the standard defined by the Council of 
Europe for plasma transfusion. Obtained PSA microarray data showed 
good linearity to a well-documented commercial PSA assay.

Acoustophoresis microchip for bead based extraction of specific binders 
from antibody libraries was developed. Beads, carrying bound species, 
are transfered into clean buffer, reducing the high background of non spe-
cific material. The chip performance compete well with standard manual 
protocols regarding washing efficiency. 

System schematic and images of the trifurcation inlet (A) 
and outlet (B) of one wash unit. Two sequential buffer ex-
changes are carried out in one passage through the device.

Acoustophoresis based extraction. Beads 
are transferred from one laminar flow path 
into a stream of clean wash fluid.
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(a) Schematic of the device. Channel structure etched in Silicon with a bonded piece of glass on 
top. An aluminium distance is placed between the chip and a piezoceramic transducer (dark 

grey). Fluid connections are attached to the bottom side of the chip. (b) A top view of the channel 
along with flow directions. (c) Lipid depletion mode where lipids are translated into the side flows 
while retaining cells and supernatant in the center outlet. (d) Lipid enrichment mode where lipids 

are fo-cused and extracted via the center outlet in a minimized fraction of the volume flow.

Milk solids are normally impossible to detect without appropriate staining 
protocols due to overlapping size distributions of cells and lipid particles.  
Acoustophoretic removal of lipid particles allows for in line optical mea-
surement strategies not involving any form of staining.  Similarly, enriched 
lipid samples allow direct lipid analysis without chemicals.

Raw milk quality control using acoustophoresis
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Abstract
A new method is reported on how to measure the local pressure amplitude and the Q factor of ultrasound resonances in microfluidic chips designed
for acoustophoresis of particle suspensions. The method relies on tracking individual polystyrene tracer microbeads undergoing acoustophoresis in
straight water-filled silicon/glass microchannels and on a fully automated PIV system. The tracks are recorded and fitted to a theoretical expression
for the acoustophoretic motion of the microbeads. From the curve fits we obtain the acoustic energy density, and hence the pressure amplitude as
well as the acoustophoretic force. By plotting the obtained energy densities as a function of applied frequency, we obtain Lorentzian line shapes,
from which the resonance frequency and the Q factor for each resonance peak are derived. PIV measurements yield the acoustic velocity amplitude.
Both measurements yield same results: acoustic energy densities of the order of 10 J/m3, pressure amplitudes of 0.2 MPa, and Q factors around 500.

a Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby, Denmark.
b Department of Electrical Measurements, Lund University, Lund, Sweden

Rune Barnkoba, Per Augustssonb, Thomas Laurellb, and Henrik Bruusa

Microchannel acoustophoresis:
Resonances, particle tracking, and PIV
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(a)  Silicon/glass chips containing straight
      channels of length l = 40 mm, width
      w = 377 mm, and height h = 157 mm.
(b)  Photograph of the experimental setup:
       chip mounted on PZT piezo crystal in
       PMMA holder under microscope with
       attached camera.

Eac =
p2a

4ρwac2wa

(1)

λy =
2π

ky
(2)

η (3)

a (4)

Eac =
p2a

4ρwac2wa

(1)

λy =
2π

ky
(2)

D. Transverse particle path

The path of a microbead moving under acoustophoresis is given

by the position vector (x(t), y(t)). A particularly simple analytical

expression for the transverse part y(t) of this path can be

obtained from eqn (8) and (12) in the limit of a long axial

wavelength, kx z 0, i.e. a 1D transverse wave. Given this, the

y-component Fy of the acoustophoretic force becomes

Fy ¼ 2kyUo

�
5g� 2

2gþ 1
� 1

gb2

�
sin

�
2kyy

�
: (15)

We can neglect inertial effects because the flow speed of our

5-mm-microbeads never exceeds 200 mm/s resulting in a Reynolds

number less than 0.001. We can also neglect the influence from

the Stokes drag due to the acoustic streaming. This was

demonstrated experimentally by Hags€ater et al.32 In a direct

comparison of the acoustic forces on microbeads in a micro-

fluidic chamber it was shown that the motion of 1 mm beads was

governed entirely by Stokes drag from the acoustic streaming,

while the motion of the 5 mm beads was dominated by the

acoustic radiation force. Moreover, in this work we never

observed any traces of acoustic flow rolls.

To determine the transverse path y(t) we therefore balance the

acoustophoretic force Fy with the Stokes drag force due to the

viscosity h from the quiescent liquid, and obtain the following

differential equation,

6pha
dy

dt
¼ 2kyUoF sin

�
2kyy

�
(16)

where F is the acoustophoretic coefficient,39

F ¼ 5g� 2

2gþ 1
� 1

gb2
(17)

Separating the variables y and t, and using the fact that 2
Ð
ds/

sin(2s) ¼ log|tan(s)| leads to an analytical expression for the

transverse path

yðtÞ ¼ 1

ky
arctan

�
tan

�
kyyð0Þ

�
exp

�
4F

9h

�
kya

�2
Eac t

��
(18)

where y(0) is the transverse position at time t ¼ 0. Such paths

have previously been calculated numerically by Townsend et al.40

Inverting the above expression, we can also calculate the time t

it takes for a particle to move from any initial position y(0) to any

final position y(t),

t ¼ 9h

4F
�
kya

�2
Eac

ln

"
tan

�
kyyðtÞ

�

tan
�
kyyð0Þ

�
#

(19)

A special case of this expression, namely the time for a particle

to reach the nodal line, was derived by Limaye and Coakley.41

E. Resonance line shape

It is straightforward to show that the acoustic energy density

Eac(f) for a liquid slab between two walls counter-oscillating at

frequency f exhibits a Lorentzian line shape near any given

resonance frequency f1,

Eacðf Þ ¼
E1h

2Q1

f1
ðf � f1Þ

i2
þ1

: (20)

The maximum of the energy density at resonance is E1, while the

full-width at half-maximum is df1 ¼ f1/Q1, where the Q factor Q1

of the resonance is related to dissipation of the acoustic energy

due to viscosity in the bulk liquid and radiation losses from the

surfaces of the chip.

III. Chip, setup, and experimental procedure

A. Chip and experimental setup

To study the local acoustic pressure amplitude in acousto-

phoresis microchannels two microfluidic chips were developed,

Fig. 3(a). Each chip consists of a straight channel with one inlet

and one outlet fabricated using standard photolithography and

anisotropic KOH etching in silicon h100i, yielding a rectangular

channel cross section. The channel was sealed by an anodically

bonded pyrex glass lid, and short pieces of silicone tubing were

attached to their respective 1-mm-diameter holes in the glass lid

by silicone glue. All dimensions are given in the figure caption.

The widthW of the chip can be characterized by the ratio a of the

number of acoustic wavelengths in silicon and that of water.

Fig. 3 (a) The silicon/glass chips containing straight channels of length l

¼ 40 mm, width w ¼ 377 mm, and height h ¼ 157 mm. The channels are

etched down into the silicon chip of thickness hsi ¼ 350 mm, and they are

covered by a pyrex glass lid of thickness hpy¼ 1.13mm. The lengths of the

chips are L ¼ 50 mm and the widths are W ¼ 2.52 mm (a ¼ 1) and W ¼
4.67 mm (a¼ 2), respectively. (b) A photograph of the experimental setup

with the chip and the PZT piezo crystal mounted under the microscope

and the CCD camera. The piezo has the dimension 50.0 mm � 12.0 mm

� 1.0 mm, and thus the entire chip rests on it.
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Eac =
p2a

4ρwac2wa

(1)

Theoretical microbead trajectory y(t) 

(1)

acoustophoretic
contrast factor

since the parameters listed in Table 1 yield an acoustic impedance

ratio (rsicsi)/(rwacwa) ¼ 13.4 much larger than unity, the silicon

surrounding our rectangular water channel can to a good

approximation be treated as an infinitely hard material. In that

case the normal velocity on all walls is zero, which according to

eqn (1b) is equivalent to Neumann boundary conditions n$Vp1 ¼
0 for the pressure. It is easily verified that with this boundary

condition the pressure p1 solving eqn (1a) for a rectangular box

placed along the coordinate axes with its opposite corners at (0,

0, 0) and (l, w, h) is

p1(x, y, z) ¼ pa cos(kxx) cos(kyy) cos(kzz) (4)

where pa is the pressure amplitude, and (kx, ky, kz)¼ p(nx/l, ny/w,

nz/h) with nx, ny, nz ¼ 0, 1, 2, . . The corresponding three-index

resonance frequencies fnx ;ny;nz ¼ unx;ny ;nz=ð2pÞ are given by

fnx ;ny ;nz ¼
cwa

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2x
l2

þ
n2y

w2
þ n2z
h2

s
;

with nx; ny; nz ¼ 0; 1; 2;.:

(5)

For later use we denote the transverse wavelength in the y-

direction by l. The lowest resonance condition in this direction is

thus w ¼ l/2 or ky ¼ p/w. Two examples of resonant standing

ultrasound waves are shown in Fig. 1.

C. The acoustic radiation force

Given the pressure field p1 and velocity field v1 it is possible to

calculate the acoustic radiation force on a particle with volume V

¼ (4p/3)a3 and radius a much smaller than the acoustic wave-

length l. Both for biological cells and for microbeads used as

tracers we are in this limit. The material parameters, with

subscripts ‘‘wa’’ for the water and ‘‘p’’ for the particle, enter as the

speed of sound ratio b and the density ratio g,

b ¼ cp

cwa
; g ¼

rp

rwa
(6)

which appear in the compressibility factor f1 and the density

factor f2 as

f1 ¼ 1� 1

gb2
; f2 ¼

2g� 2

2gþ 1
: (7)

The general expression for the time-averaged acoustic radia-

tion force hFaci is a gradient of a potential,3

hFaci ¼ �VUac, (8)

where this acoustic potential Uac is given by

Uac ¼ V

�
f1

2rwac
2
wa

�
p21
�
� 3f2rwa

4

���v1j2
��

¼ V

4rwac
2
wa

�
2 f1

�
p21
�
� 3f2

1

k2

���Vp1j2
��
:

(9)

The latter form is obtained by use of eqn (1b) and k2 ¼ kx
2 + ky

2 +

kz
2.

To a good approximation the pressure eigenmodes p1 are given

by simple cosine/sine standing waves in a water channel sur-

rounded by infinitely hard walls. For h < w,l, the pressure

eigenmode eqn (4) can be approximated by the 2D expression

with kz ¼ 0,

p1(x, y, z) ¼ pa cos(kxx) cos(kyy), (10a)

Vp1ðx; y; zÞ ¼ �kxpa sinðkxxÞ cos
�
kyy

�
ex

�kypa cosðkxxÞ sin
�
kyy

�
ey:

(10b)

This standing wave can be interpreted as two counter-propa-

gating waves along the direction k¼ kxex + kyey, which forms the

angle q with the x-axis,

cos q ¼ kx

k
; sin q ¼ ky

k
; k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
x þ k2

y

q
: (11)

Inserting this in Gorkov’s expression, eqn (9), we arrive at the

acoustic potential

Uac ¼ Uo[2f1 cos
2(kxx) cos

2(kyy) – 3f2 sin
2(kxx) cos

2(kyy) cos
2 q –

3f2 cos
2(kxx) sin

2(kyy) sin
2 q] (12)

with an amplitude Uo given by

Uo ¼
p2aV

8rwac
2
wa

¼ 2p

3
a3Eac; (13)

where Eac ¼ pa
2/(4rwacwa

2) is the position-independent acoustic

energy density for a 1D standing wave derived from eqn (2).

A numerical example of the acoustic potential Uac/Uo for a

polystyrene sphere is shown in Fig. 2. Similar plots are found

in refs. 37 and 38.

For later use we state the position-dependent acoustic energy

density Eac
2D for the 2D standing wave given in eqn (10a):

E2D
ac (x, y) ¼ [sin2 q cos2(kxx) + cos2 q cos2(kyy)] Eac. (14)

Fig. 1 Color plot (red positive, blue negative) of the pressure field p1 at

resonance in a water-filled microchannel of length l ¼ 40 mm along x,

width w¼ 377 mm along y, and height h¼ 157 mm along z, surrounded by

an infinitely hard acoustic material, see eqn (4). (a) Resonance (nx, ny, nz)

¼ (0, 1, 0) with f0, 1, 0 ¼ 1.9668 MHz, and (b) (nx, ny, nz) ¼ (3, 1, 0) with

f3, 1, 0 ¼ 1.9676 MHz.

Fig. 2 Contour plot with 10% contour lines from low (dark) to high

(light) of the normalized acoustic potential Uac/Uo from eqn (12) for

a polystyrene sphere in water given the pressure field p1 of eqn (10a) with

(kx, ky)¼ (p/(2w), p/w) so that qz 63�. Further parameter values used in

the simulation are given in Table 1.
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2(kyy) – 3f2 sin
2(kxx) cos

2(kyy) cos
2 q –

3f2 cos
2(kxx) sin

2(kyy) sin
2 q] (12)

with an amplitude Uo given by

Uo ¼
p2aV

8rwac
2
wa

¼ 2p

3
a3Eac; (13)

where Eac ¼ pa
2/(4rwacwa

2) is the position-independent acoustic

energy density for a 1D standing wave derived from eqn (2).

A numerical example of the acoustic potential Uac/Uo for a

polystyrene sphere is shown in Fig. 2. Similar plots are found

in refs. 37 and 38.

For later use we state the position-dependent acoustic energy

density Eac
2D for the 2D standing wave given in eqn (10a):

E2D
ac (x, y) ¼ [sin2 q cos2(kxx) + cos2 q cos2(kyy)] Eac. (14)

Fig. 1 Color plot (red positive, blue negative) of the pressure field p1 at

resonance in a water-filled microchannel of length l ¼ 40 mm along x,

width w¼ 377 mm along y, and height h¼ 157 mm along z, surrounded by

an infinitely hard acoustic material, see eqn (4). (a) Resonance (nx, ny, nz)

¼ (0, 1, 0) with f0, 1, 0 ¼ 1.9668 MHz, and (b) (nx, ny, nz) ¼ (3, 1, 0) with

f3, 1, 0 ¼ 1.9676 MHz.

Fig. 2 Contour plot with 10% contour lines from low (dark) to high

(light) of the normalized acoustic potential Uac/Uo from eqn (12) for

a polystyrene sphere in water given the pressure field p1 of eqn (10a) with

(kx, ky)¼ (p/(2w), p/w) so that qz 63�. Further parameter values used in

the simulation are given in Table 1.
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speed of sound ratio

density ratio

transverse wavelength

acoustic energy density

Fitting parameters: Eac =
p2a

4ρwac2wa

(1)

λy =
2π

ky
(2)

and

viscosity of carrier liquid

particle radius

Eac =
p2a

4ρwac2wa

(1)

λy =
2π

ky
(2)

Eac =
p2a

4ρwac2wa

(1)

λy =
2π

ky
(2)

η (3)

a (4)

    stop flow
ultrasound off

     stop flow
ultrasound on

Focusing of polystyrene microbeads

Fit microbead trajectory by Eq. (1) using
resonance energy density and wavelength

Acoustic energy density scales with the
applied piezo voltage to the power 2.

Measured half wavelength differs less than
one standard deviation from the expected
width of the channel.

Measured acoustic energy density spec-
trum is fitted to Lorentzian line-shapes to
extract the resonance Q-factors.

2D pressure eigenmode simulation.
Calculated peak spacing is 12 kHz. 

Measured peak spacing is 9.4 kHz. 

Fully automated PIV measurement of the
microbead acoustophoretic velocity field.
Colors show the velocity magnitude in µm/s.

Average and standard deviation of the
y-component of the velocity field along the
channel showing the nearly perfect trans-
verse period-doubled standing half wave.

In situ measurements of ultrasound
resonance parameters:

     1. the acoustic energy density
                  0.65 - 50 J/m3

     2. the local pressure amplitude
                  0.08 - 0.66 MPa
     3. the resonance Q-factor
                  209 - 577

by tracking of individual polystyrene
microbeads undergoing acoustophoresis. 

Established fully automated PIV setup
showing the 1D-assumption to be
accurate.

Investigation of the full 2D global
resonance behaviour by use of the new
PIV system having higher spatial and
temporal resolution.

R. Barnkob, P. Augustsson,
T. Laurell, and H. Bruus,
Measuring the local pressure amplitude
in microchannel acoustophoresis,
Lab on a Chip 10, 563-570 (2010)

Acoustic radiation force Fac acts on the
particles (p) in the carrier liquid (wa).

Eac =
p2a

4ρwac2wa

(1)

λy =
2π

ky
(2)

η (3)

a (4)

⇓ (5)

1. Resonance condition: 
2. 1D transverse acoustophoretic force Fac, y
3. Stokes drag force Fdrag balances Fac, y 

Eac =
p2a

4ρwac2wa

(1)

λy =
2π

ky
(2)

η (3)

a (4)

⇓ ⇒ (5)

1
2λy = w

Eac =
p2a

4ρwac2wa

(1)

λy =
2π

ky
(2)

η (3)

a (4)

⇓ ⇒ (5)

1
2λy = w

p(x, y) = pa cos (kyy) (6)

ux(x, y) = 0 (7)

uy(x, y) = ua sin (2kyy) (8)

www.nanotech.dtu.dk/microfluidics

www.elmat.lth.se/forskning/
nanobiotechnology_and_labonachip/
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REDUCED PARTICLE SIZE DISPERSION
IN FREE FLOW ACOUSTOPHORESIS

USING 2D ACOUSTIC PREFOCUSING 
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Abstract
We present for the first time a 2-dimensional 
acoustic standing wave mode of operation in free 
flow acoustophoresis (FFA).  A vastly improved 
size dispersion profile is obtained as compared to 
previous work by employing 2-dimensional acous-
tic prefocusing of the particles into a precisely con-
fined flow stream prior to entering the FFA separa-
tion zone, Fig 1.  Reduced size dispersion increas-
es the resolving power of acoustophoresis and ex-
pands its applicability for cell fractionation based 
on size, density and compressibility.

Experiments and Results
As a model system we prepared a ~1.4% by 
volume polystyrene particle mixture of 3 μm 
(0.15% by volume), 7 μm (0.65% by volume) and 
10 μm (0.60% by volume). The 2-dimensional pre-
focusing channel was investigated by ocular in-
spection at different angles to confirm that par-
ticles were being focused vertically as well as hori-
zontally.  Fig 4 shows the prefocusing channel with 
and without the prefocusing actuator active.  Mul-
tisizer (Coulter) particle analysis revealed a sig-
nificantly improved sorting capability when actu-
ating the prefocusing channel as compared to using 
a passive inlet channel.  Inactive prefocusing re-
covered only ~95%, ~74% and ~84% of the 3, 7 
and 10 μm particles into the intended outlet, Fig 5, 
whereas activation of the prefocusing channel in-
creased the separation efficiencies to ~97%, ~93% 
and ~99% for the 3, 7 and 10 μm particles, respec-
tively, Fig 6.
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Conclusions
The presented FFA chip constitutes a significant improvement compared to previous 
work. For the first time 2-dimensional acoustic prefocusing has been implemented in a 
particle separation system based on intrinsic acoustic properties. The reduced particle 
dispersion significantly increases the resolving power in FFA systems.

Operating principle
Fig 2 shows a schematic of the FFA principle. 
Particles exposed to a resonant acoustic pres-
sure field migrate towards the center of a mi-
crochannel. The migration speed is deter-
mined by the size and acoustic properties of 
the particle and the counteracting Stoke’s drag 
force. To further increase the separation effi-
ciency we introduce the particles via a prefo-
cusing segment that confines the particles lat-
erally and vertically by means of a 2-dimen-
sional acoustic resonance, Figs 1 and 3. As the 
prefocused particle stream enters the main 
separation channel the particles are laminated 
close to the side wall by a main buffer flow 
prior to entering the FFA zone, Fig 3. 

Figure 3. FFA with 2-dimensional 
prefocusing segment. Pre align-
ment of the introduced particles 
enables improved size discrimi-

nation in the system. 

Figure 2. Basic FFA principle. Par-
ticles are laminated near the FFA 
channel side wall and migrates to 
an acoustic standing wave node in 
the channel center at size depen-

dent velocities.

Figure 1. Schematic of the FFA-
chip with the novel 2-dimensional 

prefocusing zone.

Figure 4. (a, b) Photo of particles entering the FFA channel where after being separated 
and (c-f) extracted. (a, c, e) Prefocusing off. (b, d, f) Prefocusing on.

Figure 5. Relative distribution of particle 
sizes in each outlet. Prefocusing off.

Figure 6. Relative distribution of particle 
sizes in each outlet. Prefocusing on.
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Non-Contact Acoustic Trapping
The system shows for the first time acoustic trapping in disposable borosilicate capillaries. Lamina-
tion of the capillary with an ultrasonic transducer creates a three dimensionally confined acoustic 
standing wave caused by the sub-wavelengt thickness of the capillay walls. The localized acoustic 
field is capable of retaining cells or particles against a flowing liquid in a non-contact fashion.

Electrical Measurements, Lund University, SWEDEN

Björn Hammarström, Thomas Laurell, Mikael Evander, Johan Nilsson and Simon Ekström

Label-Free Cell Population Studies In Disposable Acoustic 
Trapping Capillaries With ISET Enhanced MALDI- MS Analysis

Abstract
Technology that enables investigation of cell-cell or 
cell-ligand interactions on small populations of cells 
with high sensitivity, specificity and reproducibility 
has numerous high-impact applications in life science 
and drug discovery.
With this in mind, a system for mass spectrometric 
analysis (MS) of acoustically  trapped small cell popu-
lations has been developed and successfully applied 
for analysis of red blood cells (RBC). 

Experiments and Results
The analytical read-out after MALDI-MS analysis of blood cells using the described system is shown below. A 50 µL blood sample was diluted to 250 µL with PBS 
(pH 7.4), spiked with a drug compound (40 µM) and a peptide (2 µM) followed by incubation at 37 C for 1 h. 10 µL of this sample was aspirated into the capillary, 
trapping a cell agglomerate consisting of approx. 500 000 RBC. The trapped cells were washed throufh perfusion with running buffer (PBS, pH 7,4), removing 
non-trapped cells and plasma,. Subsequently, the trapped RBC were lysed through aspiration of 25 µL RBC lysis buffer. The perfusing wash and lysis solutions 
were collected as fractions and MALDI analysis was performed. The data, figure 4, confirms the expected results as the spiked drug could penetrate the RBC mem-
brane and is observed in the lysed sample (A3), but not in the preceeding wash (A2). The spiked peptide that should not be able to penetrate the RBC membrane 
could not be found in the lysed sample. There were also many differentially observed peaks originating from the lysed cell in the spectra, see enlargement B1-B3 
in figure 4.
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Conclusions
A system for MS analysis of small cell populations has been implemented. This offers a controlled 
microenvironment, reproducible non-contact trapping, and dynamic sample handeling trough 
aspiration using the open capillary. This offers a versatile analysis platform with low complexity 
and easy integration to standard equipment.

Figure 2. Non-contact trapping in an acoustic field localized to the vicinity of an ultrasonic transducer. 

Figure 1. Acoustic trapping of red blood cells in a glas 
capillary mounted in a XYZ-stage allows automated cell-
ligand interaction analysis of non-contact handeled cells.

Figure 3. Sample workflow, ISET chip based SPE allow 
MS analysis of higly complex samples such as cell lysate.

Figure 4. Analytical read-out of a single RBC cluster (~ 500 000 cells) with two wash fractions and lysis of the trapped cells. Enlargement A shows uptake of the 
spiked drug, B shows differential peaks originating from intracellular material released upon lysis and C shows sucessful removal of the spiked impermeable peptide.

Automated Workflow
The trapping capillary was mounted on a pro-
grammable XYZ-stage. This allowed cells and 
perfusing liquids to be aspirated or deposited 
directly into different wells of a microtiter 
plate in a precise and automated manner. 
Subsequently  the samples were robotically 
transfered to an ISET-plate [1] for reversed-
phased solid phase extraction (SPE) prior to 
MALDI-MS analysis.
This automated set-up allows for analysis of 
sample fractions taken at different intervals 
to monitor any sequential treatment of the 
trapped bead/cell agglomerate.
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Ultrasonic particle manipulation 
for mid-infrared spectroscopy of 
suspensions 

Sample suspension: 
Polystyrene beads in methanol

Markus Brandstetter1, Bernhard Zachhuber1, Stefan Radel2, Johannes Schnöller1, 
Martin Gröschl2, Bernhard Lendl1

1Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
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Introduction

On-line measurement In-line measurement

ATR crystal

Ultrasound field is adjusted to push suspended 
particles towards the ATR crystal   Absorption 
spectrum of particles is acquired (broad line).

Ultrasound field is adjusted to keep suspended 
particles off the ATR crystal  Background 
spectrum (narrow line) is acquired.

An acoustic standing wave field, acting on a suspension, results in the separation of the suspended particles from the host fluid. This separation 
effect was employed to enable mid-infrared absorption measurements of particles and host fluid separately using ATR (Attenuated Total 
Reflection) spectroscopy.

Different stages in the development process of this technology are presented, starting with an on-line measurement system based on a horizontal 
flow cell. This technology was improved by using an ATR fibre probe and the design of an attachable ultrasonic resonator. 

agglomeration in 
pressure nodal planes

enhanced settling 
and measurement

sampling

Fast suspension analysis for reaction monitoring was achieved by 
particle manipulation in a flow cell using 2 MHz ultrasound waves.

The ultrasonic transducer, consisting of a PZT ceramic and a glass 
carrier layer, generates acoustic standing waves within the flow cell.

Ultrasound enhanced ATR 
in-line fibre probe 

Mounted to 
bioreactor wall or 
plate through a 
standard port.

ATR

ultrasonic field region

bioreactor

transducer

Prototype for
semi-industrial 
environment.

sample
analysis

background 
analysis

A flexible ATR fibre probe 
replaces a stationary flow cell.

Absorption measurements 
are made directly in the 
suspension.

In-situ analysis minimises 
interferences and 
contamination.

The fibre probe head serves as acoustic reflector:

12 mm

ATR

Gap width

ATR fibre probe A

ATR diamond

ATR probe and transducer are immersed in sample suspension. 
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ABSTRACT: 
In this poster we present the effect of an ultrasound field on 
microbubbles flowing in soft PDMS channels. The manipulation of 
microbubbles, acting as tiny gas samples, is of interest for Lab-on-a- 
chip application. Because of their high compressibility bubbles pulsate 
and interact through acoustic Bjerknes forces. This interaction is 
usually attractive, resulting in bubble agglomeration, but here we show 
that the interaction can present a short-range repulsion leading to a 
finite equilibrium distance. The bubbles then spontaneously self-
organize into a periodic arrangement of positions.   
These "acoustically-bound crystals" move independently of the acoustic 
standing wave. The equilibrium distance of the crystal is tunable:   
around 50 times smaller than the wavelength of sound in water, it can 
be adjusted by changing the excitation frequency. 
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REDUCED PARTICLE SIZE DISPERSION
IN FREE FLOW ACOUSTOPHORESIS

USING 2D ACOUSTIC PREFOCUSING 
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Abstract
We present for the first time a 2-dimensional 
acoustic standing wave mode of operation in free 
flow acoustophoresis (FFA).  A vastly improved 
size dispersion profile is obtained as compared to 
previous work by 2-dimensional acoustic prefo-
cusing of the particles into a precisely confined 
flow stream prior to entering the FFA separation 
zone, Fig 1.  Reduced size dispersion increases the 
resolving power of acoustophoresis and expands 
its applicability for cell fractionation based on size, 
density and compressibility.

Experiments and Results
As a model system we prepared a ~1.4% by 
volume polystyrene particle mixture of 3 µm 
(0.15% by volume), 7 µm (0.65% by volume) and 
10 µm (0.60% by volume). The 2-dimensional pre-
focusing channel was investigated by ocular in-
spection at different angles to confirm that par-
ticles were being focused vertically as well as hori-
zontally.  Fig 4 shows the prefocusing channel with 
and without the prefocusing actuator active.  Coul-
ter counter particle analysis revealed a signifi-
cantly improved sorting capability when actuating 
the prefocusing channel as compared to using a 
passive inlet channel.  Inactive prefocusing recov-
ered ~95%, ~74% and ~84% of the 3, 7 and 10 µm 
parti-cles into the intended outlet, Fig 5. Activation 
of the prefocusing channel increased the separa-
tion efficiencies to ~97%, ~93% and ~99% for the 
3, 7 and 10 µm particles, respectively, Fig 6.
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Conclusions
The presented FFA chip constitutes a significant improvement compared to previous 
work. For the first time 2-dimensional acoustic prefocusing has been implemented in a 
particle separation system based on intrinsic acoustic properties. The reduced particle 
dispersion significantly increases the resolving power in FFA systems.

Operating principle
Fig 2 shows a schematic of the previos FFA 
principle. Particles exposed to a resonant 
acoustic pressure field migrates towards the 
center of a microchannel. The migration ve-
locity is determined by the size and acoustic 
properties of the particle and the counteracting 
Stoke’s drag force. To further increase the 
separation efficiency we introduce the par-
ticles via a prefocusing segment that confines 
the particles laterally and vertically by means 
of a 2-dimensional acoustic resonance, Fig 1. 
As the prefocused particle stream enters the 
main separation channel the particles are lami-
nated close to the side wall by a main buffer 
flow prior to entering the FFA zone, Fig 3. 

Pre-focusing
transducer

Sorting
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5 MHz 2 MHz

Separated
particles

Sample inlet

Carrier fluid
inletFlow

Figure 3. FFA with 2-dimensional 
prefocusing segment. Pre align-
ment of the introduced particles 
enables improved size discrimi-

nation in the system. 

Figure 2. Basic FFA principle. Par-
ticles are laminated near  the FFA 
channel side wall and migrates to 
an acoustic standing wave node in 
the channel center at size depen-

dent velocities.

Figure 1. Schematic of the FFA-
chip with the novel 2-dimensional 

prefocusing zone.

Figure 4. (a, b) Photo of particles entering the FFA channel whereafter being separated 
and (c-f) extracted. (a, c, e) Prefocusing off. (b, d, f) Prefocusing on.

Figure 5. Relative distribution of particle 
sizes in each outlet. Prefocusing off.

Figure 6. Relative distribution of particle 
sizes in each outlet. Prefocusing on.
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Non-Contact Acoustic Trapping
The system shows for the first time acoustic trapping in disposable borosilicate capillaries. Lamina-
tion of the capillary with an ultrasonic transducer creates a three dimensionally confined acoustic 
standing wave caused by the sub-wavelengt thickness of the capillay walls. The localized acoustic 
field is capable of retaining cells or particles against a flowing liquid in a non-contact fashion.

Electrical Measurements, Lund University, SWEDEN

Björn Hammarström, Thomas Laurell, Mikael Evander, Johan Nilsson and Simon Ekström

Label-Free Cell Population Studies In Disposable Acoustic 
Trapping Capillaries With ISET Enhanced MALDI- MS Analysis

Abstract
Technology that enables investigation of cell-cell or 
cell-ligand interactions on small populations of cells 
with high sensitivity, specificity and reproducibility 
has numerous high-impact applications in life science 
and drug discovery.
With this in mind, a system for mass spectrometric 
analysis (MS) of acoustically  trapped small cell popu-
lations has been developed and successfully applied 
for analysis of red blood cells (RBC). 

Experiments and Results
The analytical read-out after MALDI-MS analysis of blood cells using the described system is shown below. A 50 µL blood sample was diluted to 250 µL with PBS 
(pH 7.4), spiked with a drug compound (40 µM) and a peptide (2 µM) followed by incubation at 37 C for 1 h. 10 µL of this sample was aspirated into the capillary, 
trapping a cell agglomerate consisting of approx. 500 000 RBC. The trapped cells were washed throufh perfusion with running buffer (PBS, pH 7,4), removing 
non-trapped cells and plasma,. Subsequently, the trapped RBC were lysed through aspiration of 25 µL RBC lysis buffer. The perfusing wash and lysis solutions 
were collected as fractions and MALDI analysis was performed. The data, figure 4, confirms the expected results as the spiked drug could penetrate the RBC mem-
brane and is observed in the lysed sample (A3), but not in the preceeding wash (A2). The spiked peptide that should not be able to penetrate the RBC membrane 
could not be found in the lysed sample. There were also many differentially observed peaks originating from the lysed cell in the spectra, see enlargement B1-B3 
in figure 4.

References
[1] "Miniaturized solid-phase extraction and sample prepara-
tion for MALDI MS using using a microfabricated integrated 
selective enrichment target," S. Ekström, L. Wallman, D. Hök, 
G. Marko Varga and T. Laurell, , Journal of Proteome Re-
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Conclusions
A system for MS analysis of small cell populations has been implemented. This offers a controlled 
microenvironment, reproducible non-contact trapping, and dynamic sample handeling trough 
aspiration using the open capillary. This offers a versatile analysis platform with low complexity 
and easy integration to standard equipment.

Figure 2. Non-contact trapping in an acoustic field localized to the vicinity of an ultrasonic transducer. 

Figure 1. Acoustic trapping of red blood cells in a glas 
capillary mounted in a XYZ-stage allows automated cell-
ligand interaction analysis of non-contact handeled cells.

Figure 3. Sample workflow, ISET chip based SPE allow 
MS analysis of higly complex samples such as cell lysate.

Figure 4. Analytical read-out of a single RBC cluster (~ 500 000 cells) with two wash fractions and lysis of the trapped cells. Enlargement A shows uptake of the 
spiked drug, B shows differential peaks originating from intracellular material released upon lysis and C shows sucessful removal of the spiked impermeable peptide.

Automated Workflow
The trapping capillary was mounted on a pro-
grammable XYZ-stage. This allowed cells and 
perfusing liquids to be aspirated or deposited 
directly into different wells of a microtiter 
plate in a precise and automated manner. 
Subsequently  the samples were robotically 
transfered to an ISET-plate [1] for reversed-
phased solid phase extraction (SPE) prior to 
MALDI-MS analysis.
This automated set-up allows for analysis of 
sample fractions taken at different intervals 
to monitor any sequential treatment of the 
trapped bead/cell agglomerate.
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Flow-free transport of particles 
in a macro scale chamber 

Dirk Möller1, Thomas Schwarz1, Jurg Dual1 

Introduction 
There are needs for concentration of particles in batch mode, such as achieved with sedimentation 
or centrifugation. These methods are limited by either Brownian motion or lead to tightly packed 
agglomerates. Another solution is the use of acoustics to achieve a net mean transport of particles in 
a single direction1,2,3. Such an acoustic system can be operated in batch mode in a sealed 
compartment. 
 
Method 
A slow frequency sweep combined with an asymmetric excitation can be used such that an overall 
movement in one direction at all places within a device can be realised. The boundary which is set 
to vibration acts as a variable boundary. Therefore by increasing the frequency and with it the 
number of nodal planes, particles can be moved away from the excitation or, by decreasing the 
frequency continuously, particles can be moved towards the excitation boundary. 
 
Results 
Repeated frequency sweeping in a range from 1.5MHz to 2.5MHz has been used in a square (23 x 
23 x 5mm) plastic (PE) chamber to collect particles along one of the sidewalls. Operating with 
particles with a diameter of 9μm, about 80% to 90% of the particles can be concentrated within less 
than 2min. Time and yield are significantly increased with 26μm particles.  

 

       
 

Fig. 1. Concentration of 9μm particles with a repeated frequency sweep (1.5MHz – 2.5MHz). The particle distribution is shown in 
initial condition on the left image, after 40s in the second image and after 120s in the third image. 

 
A FEM simulation of such a chamber in 2D and 3D has been used to identify a significant influence 
of the boundaries perpendicular to the plane waves. The influence is such that for different 
frequencies, there is a backward movement at different spots within the chamber. 

                                                 
1 A. Haake, Micromanipulation of Small Particles with Ultrasound, Diss. ETH No. 15681 
2 M. Saito, N. Kitamura and M. Terauchi, Jour. Of Appl. Physics, vol 92, no 12, 12 (2002), pp. 7581-7586 
3 G. Whiteworth, M.A. Grundy and W.T. Coakley, Ultrasonics, vol 29 ,12 (1991), pp. 439-444 
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Rotation of non spherical particles  
with amplitude modulation 
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Introduction 
 

The rotational manipulation of micro-particles in microfluidic devices is another step to expand the 
possible applications of ultrasonic manipulation. It consists in controlling the angular momentum 
applied to an object of very small size. The rotation speed as well as the direction of rotation are 
parameters which must be controlled in order to precisely manipulate the particles. 
 
Method 
Non spherical particles behave like spheres in a USW with an additional torque acting on the 
particle. Fibers shorter than one-fourth of the wavelength are constrained at the pressure node and 
are oriented perpendicular to the direction of wave propagation. It is possible to use this acoustic 
radiation torque for a continuous and controlled rotation of objects. 
Therefore a time-varying pressure field with change of orientation of the potential well is realized 
with the help of the amplitude modulation of two orthogonal standing waves. By varying the 
amplitudes of the standing waves in x or z direction, the orientation of the force potential minima, 
indicated by the black arrow in figure 1, could be rotated. 
 
Results 
The 360° rotation of a glass fiber (length 200 μm) due to the amplitude modulation of two 
orthogonal standing waves has been shown experimentally. The device used for the experiments 
consists of a 3x3 mm2 chamber etched into Silicon and covered with a glass plate. The actuation is done 
through a 4x4 mm2 piezoelectric crystal fixed at the back side of the device. The actuation frequency 
was set to 1085 kHz with a maximum amplitude of 30 V. 
 

  

 
Fig. 1:  Contour plot sequence of the Gor'kov force potential as result of amplitude change in x or z-direction resulting from super-

position of two in phase cosine functions with identical frequency. The term Ax or Az varies from +1 to -1. The red areas are  
potential maxima, the blue areas potential minima. The black arrow is representing a fiber at the force potential minima. 
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INTRODUCTION
Power ultrasonic reactors have gained a lot of interest in the 
food industry given the effects that can arise from sound 
induced cavitation. However, most of the new food processing 
developments have been based on empirical approaches. 
Thus, there is a need for mathematical models which help to 
understand, optimise and scale up ultrasonic reactors. In this 
work, a CFD model has been developed, to predict the acoustic 
streaming induced by an ultrasonic horn reactor.

In this work, a CFD model has been developed, to predict the 
acoustic streaming induced by an ultrasonic horn reactor. 
Acoustic streaming is a term that describes the time-average 
flow circulation near a vibrating surface, or the steady flow 
induced during the passage of an acoustic wave. The model is 
based on the acoustic streaming theory proposed by (Lighthill 
1978), who established that at powers above 4 x10-4 W the 
acoustic streaming takes the form of an inertially dominated 
turbulent jet.  The model assumes that the horn tip is an inlet 
where all the acoustic energy absorbed by the liquid is 
converted in turbulent motion, the jet. The hydrodynamic 
momentum rate of the incoming jet is assumed to be equal to 
the total acoustic momentum rate emitted by the acoustic power 
source.  Using this assumption, the Navier-Stokes and  
turbulent equations were solved using COMSOL Multiphysics to 
determine the hydrodynamic field in the reactor; the results 
were compared with the experimental data obtained by (Kumar, 
Kumaresan et al. 2006) .CFD predictions show excellent 
agreement with the experimental data at all studied power 
densities. This model successfully describes hydrodynamic 
fields (streaming) generated by ultrasound fields.

MODEL DESCRIPTION
At high Reynolds numbers and sources of high acoustic power 
the inertia term in Naiver-Stokes equation must be included:

(1)
The acoustic source releases its power as a narrow beam, 
where the net force (or rate of momentum) at a distance X 
along the sound beam is:

(2)
If the attenuation coefficient is very high, the streaming motion 
generated by the acoustic beam is a circular turbulent jet, 
delivering momentum at a rate . 

(Schlichting 1979) showed that the mean flow of a turbulent jet 
is similar to the laminar jet solution by taking a constant eddy 
viscosity equal to:

(3)
Where
The ultrasonic reactor is a cylindrical as seen in figure 1. The 
velocity profile at the inlet is estimated following two 
approaches. Following approach one the velocity profile at the 
inlet is estimated with equations taken from (Schlichting 1979) 
for a turbulent jet releasing its kinematic momentum from an 
orifice (c.f. fig 2). Following approach two, it is assumed that the 
velocity profile of the acoustically generated jet flow follows a 
Gaussian distribution.

RESULTS
Figure 3 shows a velocity distribution inside the ultrasonic 
reactor. This velocity pattern is in agreement with the 
experimental data obtained by (Kumar, Kumaresan et al. 2006) 
who mapped velocities and turbulence in the reactor using 
Laser Doppler Anemometry (LDA). The final CFD prediction at 
three power densities can be seen in figure 4. Figure 5 shows 
the radial profiles of axial velocity at different power densities for 
z = 0.13H, where H is the distance between the horn tip and the 
bottom of the vessel. As seen in the figure CFD predictions 
show an excellent agreement with the experimental data 
following both approaches.

CONCLUSIONS
Acoustically induced ultrasound streaming at powers higher or 
equal than 30 W (kWm-3) can be modelled via CFD by 
assuming that the horn tip is an inlet where a turbulent jet flow 
is injected into the vessel. The hydrodynamic rate of momentum 
of the incoming jet can be assumed to be equal to the total 
acoustic momentum rate emitted by the acoustic power source.
CFD predictions show excellent agreement with the 
experimental data at all power densities via both approaches.  

Figure 1: Schematic diagram of geometry  (3D on the 
left) and boundary conditions (2D axial symmetric on the 
right).
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superimposed in the horn. 

  2v v p v F      
  

 1 X
N

P
F e

c
 

 1 20.016t K 
K P c

Figure 3: CFD velocity distribution predicted from 
approach 2 for = 35 kWm-3 and S = 0.00281. 

Figure 5: Radial profiles of axial velocity at different 
power densities for z = 0.13H. CFD prediction using 
approach 2 (solid lines)

Figure 4: Axial velocity distribution below the horn tip 
using optimum values of x and S for approach 1 and 2 
respectively.
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